IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v98y2019icp39-46.html
   My bibliography  Save this article

Perturbed finitely repeated games

Author

Listed:
  • Marlats, Chantal

Abstract

This paper explores the robustness of predictions made in long but finitely repeated games. The robustness approach used in this paper is related to the idea that a modeler may not have absolute faith in his model: The payoff matrix may not remain the same at all dates and may vary temporarily from time to time with an arbitrarily small probability. Therefore, he may require not rejecting an outcome if it is an equilibrium in some game arbitrarily close to the original one. It is shown that the set of feasible and rational payoffs is the (essentially) unique robust equilibrium payoff set when the horizon is sufficiently large. Consequently, cooperation can arise as an equilibrium behavior in a game arbitrarily close to the standard prisoner’s dilemma if the horizon is finite but sufficiently long.

Suggested Citation

  • Marlats, Chantal, 2019. "Perturbed finitely repeated games," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 39-46.
  • Handle: RePEc:eee:matsoc:v:98:y:2019:i:c:p:39-46
    DOI: 10.1016/j.mathsocsci.2019.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489619300113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2019.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kreps, David M. & Milgrom, Paul & Roberts, John & Wilson, Robert, 1982. "Rational cooperation in the finitely repeated prisoners' dilemma," Journal of Economic Theory, Elsevier, vol. 27(2), pages 245-252, August.
    2. Jonathan Weinstein & Muhamet Yildiz, 2007. "A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements," Econometrica, Econometric Society, vol. 75(2), pages 365-400, March.
    3. Ernst Fehr & Klaus M. Schmidt, 1999. "A Theory of Fairness, Competition, and Cooperation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 817-868.
    4. Lipman, Barton L. & Wang, Ruqu, 2000. "Switching Costs in Frequently Repeated Games," Journal of Economic Theory, Elsevier, vol. 93(2), pages 149-190, August.
    5. Smith, Lones, 1995. "Necessary and Sufficient Conditions for the Perfect Finite Horizon Folk Theorem," Econometrica, Econometric Society, vol. 63(2), pages 425-430, March.
    6. Andreoni, James A & Miller, John H, 1993. "Rational Cooperation in the Finitely Repeated Prisoner's Dilemma: Experimental Evidence," Economic Journal, Royal Economic Society, vol. 103(418), pages 570-585, May.
    7. Drew Fudenberg & David M. Kreps & David K. Levine, 2008. "On the Robustness of Equilibrium Refinements," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 5, pages 67-93, World Scientific Publishing Co. Pte. Ltd..
    8. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    9. Atsushi Kajii & Stephen Morris, 1997. "The Robustness of Equilibria to Incomplete Information," Econometrica, Econometric Society, vol. 65(6), pages 1283-1310, November.
    10. Radner, Roy, 1980. "Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long but finite lives," Journal of Economic Theory, Elsevier, vol. 22(2), pages 136-154, April.
    11. Renault, Regis, 2000. "Privately Observed Time Horizons in Repeated Games," Games and Economic Behavior, Elsevier, vol. 33(1), pages 117-125, October.
    12. Chantal Marlats, 2015. "A Folk theorem for stochastic games with finite horizon," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 485-507, April.
    13. Abraham Neyman, 1999. "Cooperation in Repeated Games when the Number of Stages is Not Commonly Known," Econometrica, Econometric Society, vol. 67(1), pages 45-64, January.
    14. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
    15. Gossner, Olivier, 1995. "The Folk Theorem for Finitely Repeated Games with Mixed Strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 95-107.
    16. , & ,, 2011. "Robustness to incomplete information in repeated games," Theoretical Economics, Econometric Society, vol. 6(1), January.
    17. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-922, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Benoît & Vijay Krishna, 1996. "The Folk Theorems for Repeated Games - A Synthesis," Discussion Papers 96-03, University of Copenhagen. Department of Economics.
    2. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    3. Yangbo Song & Mofei Zhao, 2023. "Cooperative teaching and learning of actions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(4), pages 1289-1327, November.
    4. Hans-Theo Normann & Brian Wallace, 2012. "The impact of the termination rule on cooperation in a prisoner’s dilemma experiment," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 707-718, August.
    5. Tóbiás, Áron, 2023. "Rational Altruism," Journal of Economic Behavior & Organization, Elsevier, vol. 207(C), pages 50-80.
    6. Vi Cao, 2022. "An epistemic approach to explaining cooperation in the finitely repeated Prisoner’s Dilemma," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 53-85, March.
    7. Ambrus, Attila & Pathak, Parag A., 2011. "Cooperation over finite horizons: A theory and experiments," Journal of Public Economics, Elsevier, vol. 95(7), pages 500-512.
    8. Gagen, Michael, 2013. "Isomorphic Strategy Spaces in Game Theory," MPRA Paper 46176, University Library of Munich, Germany.
    9. Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2013. "Finitely repeated games with monitoring options," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1929-1952.
    10. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    11. Chen, Yi-Chun & Takahashi, Satoru & Xiong, Siyang, 2014. "The robust selection of rationalizability," Journal of Economic Theory, Elsevier, vol. 151(C), pages 448-475.
    12. Hitoshi Matsushima, 2012. "Finitely Repeated Prisoners' Dilemma With Small Fines: The Penance Contract," The Japanese Economic Review, Japanese Economic Association, vol. 63(3), pages 333-347, September.
    13. Elwyn Davies & Marcel Fafchamps, 2015. "When No Bad Deed Goes Punished: A Relational Contracting Experiment in Ghana," CSAE Working Paper Series 2015-08, Centre for the Study of African Economies, University of Oxford.
    14. repec:kbb:dpaper:2011-44 is not listed on IDEAS
    15. Renault, Regis, 2000. "Privately Observed Time Horizons in Repeated Games," Games and Economic Behavior, Elsevier, vol. 33(1), pages 117-125, October.
    16. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    17. Cason, Timothy N. & Saijo, Tatsuyoshi & Yamato, Takehiko & Yokotani, Konomu, 2004. "Non-excludable public good experiments," Games and Economic Behavior, Elsevier, vol. 49(1), pages 81-102, October.
    18. repec:tiu:tiucen:200922 is not listed on IDEAS
    19. Ernesto Reuben & Sigrid Suetens, 2012. "Revisiting strategic versus non-strategic cooperation," Experimental Economics, Springer;Economic Science Association, vol. 15(1), pages 24-43, March.
    20. Weinstein, Jonathan & Yildiz, Muhamet, 2007. "Impact of higher-order uncertainty," Games and Economic Behavior, Elsevier, vol. 60(1), pages 200-212, July.
    21. Martin Brown & Armin Falk & Ernst Fehr, 2004. "Relational Contracts and the Nature of Market Interactions," Econometrica, Econometric Society, vol. 72(3), pages 747-780, May.
    22. Atsushi Kajii & Stephen Morris, 2020. "Notes on “refinements and higher order beliefs”," The Japanese Economic Review, Springer, vol. 71(1), pages 35-41, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:98:y:2019:i:c:p:39-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.