IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i3p770-785.html
   My bibliography  Save this article

Expected gain-loss pricing and hedging of contingent claims in incomplete markets by linear programming

Author

Listed:
  • PInar, Mustafa Ç.
  • Salih, AslIhan
  • CamcI, Ahmet

Abstract

We analyze the problem of pricing and hedging contingent claims in the multi-period, discrete time, discrete state case using the concept of a "[lambda] gain-loss ratio opportunity". Pricing results somewhat different from, but reminiscent of, the arbitrage pricing theorems of mathematical finance are obtained. Our analysis provides tighter price bounds on the contingent claim in an incomplete market, which may converge to a unique price for a specific value of a gain-loss preference parameter imposed by the market while the hedging policies may be different for different sides of the same trade. The results are obtained in the simpler framework of stochastic linear programming in a multi-period setting, and have the appealing feature of being very simple to derive and to articulate even for the non-specialist. They also extend to markets with transaction costs.

Suggested Citation

  • PInar, Mustafa Ç. & Salih, AslIhan & CamcI, Ahmet, 2010. "Expected gain-loss pricing and hedging of contingent claims in incomplete markets by linear programming," European Journal of Operational Research, Elsevier, vol. 201(3), pages 770-785, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:3:p:770-785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00128-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jouini Elyes & Kallal Hedi, 1995. "Martingales and Arbitrage in Securities Markets with Transaction Costs," Journal of Economic Theory, Elsevier, vol. 66(1), pages 178-197, June.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Aleš Černý, 2003. "Generalised Sharpe Ratios and Asset Pricing in Incomplete Markets," Review of Finance, European Finance Association, vol. 7(2), pages 191-233.
    4. John H. Cochrane & Jesus Saa-Requejo, 2000. "Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 79-119, February.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Edirisinghe, Chanaka & Naik, Vasanttilak & Uppal, Raman, 1993. "Optimal Replication of Options with Transactions Costs and Trading Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 117-138, March.
    7. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. repec:dau:papers:123456789/5630 is not listed on IDEAS
    10. Ross, Stephen A, 1978. "A Simple Approach to the Valuation of Risky Streams," The Journal of Business, University of Chicago Press, vol. 51(3), pages 453-475, July.
    11. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    12. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    13. Jeremy Staum, 2004. "Fundamental Theorems of Asset Pricing for Good Deal Bounds," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 141-161, April.
    14. Nicholas Barberis & Ming Huang & Tano Santos, 2001. "Prospect Theory and Asset Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 1-53.
    15. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    16. Grüne, Lars & Semmler, Willi, 2008. "Asset pricing with loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3253-3274, October.
    17. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2012. "Dynamic Conic Finance: Pricing and Hedging in Market Models with Transaction Costs via Dynamic Coherent Acceptability Indices," Papers 1205.4790, arXiv.org, revised Jun 2013.
    2. Braouezec, Yann & Grunspan, Cyril, 2016. "A new elementary geometric approach to option pricing bounds in discrete time models," European Journal of Operational Research, Elsevier, vol. 249(1), pages 270-280.
    3. Erdnç Akyildirim & Albert Altarovici, 2016. "Partial hedging and cash requirements in discrete time," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 929-945, June.
    4. Adedoyin Isola Lawal, 2014. "Tactical Assets Allocation: Evidence from the Nigerian Banking Industry," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 10(2), pages 193-204, April.
    5. Sara Biagini & Mustafa Pinar, 2012. "The best gain-loss ratio is a poor performance measure," Papers 1209.6439, arXiv.org, revised Dec 2012.
    6. Marroquı´n-Martı´nez, Naroa & Moreno, Manuel, 2013. "Optimizing bounds on security prices in incomplete markets. Does stochastic volatility specification matter?," European Journal of Operational Research, Elsevier, vol. 225(3), pages 429-442.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Pınar, 2011. "Gain–loss based convex risk limits in discrete-time trading," Computational Management Science, Springer, vol. 8(3), pages 299-321, August.
    2. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    3. Fontana, Claudio & Runggaldier, Wolfgang J., 2021. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 66-80.
    4. repec:dau:papers:123456789/5374 is not listed on IDEAS
    5. Maria Arduca & Cosimo Munari, 2020. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Papers 2012.08351, arXiv.org, revised Apr 2022.
    6. Maria Arduca & Cosimo Munari, 2023. "Fundamental theorem of asset pricing with acceptable risk in markets with frictions," Finance and Stochastics, Springer, vol. 27(3), pages 831-862, July.
    7. Cerreia-Vioglio, S. & Maccheroni, F. & Marinacci, M., 2015. "Put–Call Parity and market frictions," Journal of Economic Theory, Elsevier, vol. 157(C), pages 730-762.
    8. Bion-Nadal, Jocelyne, 2009. "Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 738-750, December.
    9. Tomasz R. Bielecki & Igor Cialenco & Ismail Iyigunler & Rodrigo Rodriguez, 2012. "Dynamic Conic Finance: Pricing and Hedging in Market Models with Transaction Costs via Dynamic Coherent Acceptability Indices," Papers 1205.4790, arXiv.org, revised Jun 2013.
    10. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    11. Keith A. Lewis, 2019. "A Simple Proof of the Fundamental Theorem of Asset Pricing," Papers 1912.01091, arXiv.org.
    12. Chambers, Robert G. & Quiggin, John, 2008. "Narrowing the no-arbitrage bounds," Journal of Mathematical Economics, Elsevier, vol. 44(1), pages 1-14, January.
    13. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    14. Weidong Tian & Junya Jiang & Weidong Tian, 2017. "Model Uncertainty Effect on Asset Prices," International Review of Finance, International Review of Finance Ltd., vol. 17(2), pages 205-233, June.
    15. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    16. Ibáñez, Alfredo, 2008. "Factorization of European and American option prices under complete and incomplete markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 311-325, February.
    17. Dong‐Hyun Ahn & H. Henry Cao & Stéphane Chrétien, 2009. "Portfolio Performance Measurement: a No Arbitrage Bounds Approach," European Financial Management, European Financial Management Association, vol. 15(2), pages 298-339, March.
    18. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    19. Takuji Arai, 2016. "Good deal bounds with convex constraints: --- examples and proofs ---," Keio-IES Discussion Paper Series 2016-017, Institute for Economics Studies, Keio University.
    20. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    21. Aloisio Araujo & Alain Chateauneuf & José Heleno Faro & Bruno Holanda, 2019. "Updating pricing rules," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(2), pages 335-361, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:3:p:770-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.