Pareto refinements of pure-strategy equilibria in games with public and private information
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmateco.2018.09.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Paulo Barelli & Idione Meneghel, 2013.
"A Note on the Equilibrium Existence Problem in Discontinuous Games,"
Econometrica, Econometric Society, vol. 81(2), pages 813-824, March.
- Idione Soza & Paulo Barelli, 2012. "A note on the equilibrium existence problem in discontinuous games," Discussion Papers Series 467, School of Economics, University of Queensland, Australia.
- Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1999. "On a private information game without pure strategy equilibria1," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 341-359, April.
- Khan, M. Ali & Zhang, Yongchao, 2018. "On pure-strategy equilibria in games with correlated information," Games and Economic Behavior, Elsevier, vol. 111(C), pages 289-304.
- Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
- M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
- Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
- Rath, Kali P., 1998. "Perfect and Proper Equilibria of Large Games," Games and Economic Behavior, Elsevier, vol. 22(2), pages 331-342, February.
- Oriol Carbonell-Nicolau & Richard P. McLean, 2018.
"On the Existence of Nash Equilibrium in Bayesian Games,"
Mathematics of Operations Research, INFORMS, vol. 43(2), pages 100-129, February.
- Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.
- Oriol Carbonell-Nicolau & Richard McLean, 2015. "On the Existence of Nash Equilibrium in Bayesian Games," Departmental Working Papers 201513, Rutgers University, Department of Economics.
- M. Khan & Kali Rath & Yeneng Sun, 2006. "The Dvoretzky-Wald-Wolfowitz theorem and purification in atomless finite-action games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 91-104, April.
- Fu, Haifeng & Sun, Yeneng & Yannelis, Nicholas C. & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with private and public information," Journal of Mathematical Economics, Elsevier, vol. 43(5), pages 523-531, June.
- He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
- Paul R. Milgrom & Robert J. Weber, 1985.
"Distributional Strategies for Games with Incomplete Information,"
Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
- Paul Milgrom & Robert Weber, 1981. "Distributional Strategies for Games with Incomplete Information," Discussion Papers 428R, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Yu, Haomiao & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with countable actions," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 192-200, February.
- Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.
- Rath Kali P., 1994. "Some Refinements of Nash Equilibria of Large Games," Games and Economic Behavior, Elsevier, vol. 7(1), pages 92-103, July.
- Vives, Xavier, 1990.
"Nash equilibrium with strategic complementarities,"
Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
- Vives, X., 1988. "Nash Equilibrium With Strategic Complementarities," UFAE and IAE Working Papers 107-88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
- He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
- Sun, Yeneng & Zhang, Yongchao, 2009.
"Individual risk and Lebesgue extension without aggregate uncertainty,"
Journal of Economic Theory, Elsevier, vol. 144(1), pages 432-443, January.
- Sun, Yeneng & Zhang, Yongchao, 2008. "Individual Risk and Lebesgue Extension without Aggregate Uncertainty," MPRA Paper 7448, University Library of Munich, Germany.
- Roy Radner & Robert W. Rosenthal, 1982. "Private Information and Pure-Strategy Equilibria," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 401-409, August.
- Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
- Salonen, Hannu, 1996. "On the Existence of Undominated Nash Equilibria in Normal Form Games," Games and Economic Behavior, Elsevier, vol. 14(2), pages 208-219, June.
- He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
- Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
- Yi, Sang-Seung, 1999. "On the Coalition-Proofness of the Pareto Frontier of the Set of Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 26(2), pages 353-364, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khan, M. Ali & McLean, Richard P. & Uyanik, Metin, 2024. "On constrained generalized games with action sets in non-locally-convex and non-Hausdorff topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 111(C).
- Fu, Haifeng, 2021. "On the existence of Pareto undominated mixed-strategy Nash equilibrium in normal-form games with infinite actions," Economics Letters, Elsevier, vol. 201(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
- He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
- Beißner, Patrick & Khan, M. Ali, 2019. "On Hurwicz–Nash equilibria of non-Bayesian games under incomplete information," Games and Economic Behavior, Elsevier, vol. 115(C), pages 470-490.
- Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
- He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
- Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.
- Khan, M. Ali & Zhang, Yongchao, 2018. "On pure-strategy equilibria in games with correlated information," Games and Economic Behavior, Elsevier, vol. 111(C), pages 289-304.
- Sun, Xiang & Zeng, Yishu, 2020. "Perfect and proper equilibria in large games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 288-308.
- Khan, M. Ali & Rath, Kali P., 2009. "On games with incomplete information and the Dvoretsky-Wald-Wolfowitz theorem with countable partitions," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 830-837, December.
- Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013.
"Large games with a bio-social typology,"
Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
- M. Ali Khan & Kali P. Rath & Yeneng Sun & Haomiao Yu, 2011. "On Large Games with a Bio-Social Typology," Economics Working Paper Archive 585, The Johns Hopkins University,Department of Economics.
- M. Ali Khan & Kali P. Rath & Yeneng Sun & Haomiao Yu, 2012. "Large Games with a Bio-Social Typology," Working Papers 035, Toronto Metropolitan University, Department of Economics.
- Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2016. "Savage games," Theoretical Economics, Econometric Society, vol. 11(2), May.
- Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
- Haifeng Fu, 2008. "Mixed-strategy equilibria and strong purification for games with private and public information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 521-532, December.
- Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
- Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
- Zeng, Yishu, 2023. "Derandomization of persuasion mechanisms," Journal of Economic Theory, Elsevier, vol. 212(C).
- Yu, Haomiao & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with countable actions," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 192-200, February.
- Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.
- M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
- Fu, Haifeng & Sun, Yeneng & Yannelis, Nicholas C. & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with private and public information," Journal of Mathematical Economics, Elsevier, vol. 43(5), pages 523-531, June.
More about this item
Keywords
Bayes–Nash equilibrium (BNE); Pareto-undominated equilibrium; Socially-maximal equilibrium; Undominated equilibrium; Nowhere equivalence; Saturation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:79:y:2018:i:c:p:18-26. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.