IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v201y2021ics0165176521000483.html
   My bibliography  Save this article

On the existence of Pareto undominated mixed-strategy Nash equilibrium in normal-form games with infinite actions

Author

Listed:
  • Fu, Haifeng

Abstract

We show that each mixed strategy of a normal-form game can be reformulated as a pure strategy of an induced Bayesian game. Moreover, a normal-form game has a Pareto undominated mixed-strategy Nash equilibrium if and only if its induced Bayesian game has a pure-strategy Bayesian Nash equilibrium. By relying on the existence result of Pareto undominated pure-strategy Nash equilibrium in Bayesian games in Fu and Yu (2015), we also show that every normal-form game has a Pareto undominated mixed-strategy Nash equilibrium.

Suggested Citation

  • Fu, Haifeng, 2021. "On the existence of Pareto undominated mixed-strategy Nash equilibrium in normal-form games with infinite actions," Economics Letters, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:ecolet:v:201:y:2021:i:c:s0165176521000483
    DOI: 10.1016/j.econlet.2021.109771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521000483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le Breton, Michel & Weber, Shlomo, 1997. "On existence of undominated pure strategy Nash equilibria in anonymous nonatomic games," Economics Letters, Elsevier, vol. 56(2), pages 171-175, October.
    2. Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
    3. Fu, Haifeng & Yu, Haomiao, 2018. "Pareto refinements of pure-strategy equilibria in games with public and private information," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 18-26.
    4. Roy Radner & Robert W. Rosenthal, 1982. "Private Information and Pure-Strategy Equilibria," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 401-409, August.
    5. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    6. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.
    2. Fu, Haifeng & Yu, Haomiao, 2018. "Pareto refinements of pure-strategy equilibria in games with public and private information," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 18-26.
    3. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    4. Fu, Haifeng & Sun, Yeneng & Yannelis, Nicholas C. & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with private and public information," Journal of Mathematical Economics, Elsevier, vol. 43(5), pages 523-531, June.
    5. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    6. He, Wei & Sun, Xiang, 2014. "On the diffuseness of incomplete information game," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 131-137.
    7. Zeng, Yishu, 2023. "Derandomization of persuasion mechanisms," Journal of Economic Theory, Elsevier, vol. 212(C).
    8. Askoura, Y. & Sbihi, M. & Tikobaini, H., 2013. "The ex ante α-core for normal form games with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 157-162.
    9. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2016. "Savage games," Theoretical Economics, Econometric Society, vol. 11(2), May.
    10. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    11. Khan, M. Ali & Zhang, Yongchao, 2014. "On the existence of pure-strategy equilibria in games with private information: A complete characterization," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 197-202.
    12. Haifeng Fu, 2008. "Mixed-strategy equilibria and strong purification for games with private and public information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 521-532, December.
    13. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2013. "Savage Games: A Theory of Strategic Interaction with Purely Subjective Uncertainty," Risk and Sustainable Management Group Working Papers 151501, University of Queensland, School of Economics.
    14. Beißner, Patrick & Khan, M. Ali, 2019. "On Hurwicz–Nash equilibria of non-Bayesian games under incomplete information," Games and Economic Behavior, Elsevier, vol. 115(C), pages 470-490.
    15. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1999. "On a private information game without pure strategy equilibria1," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 341-359, April.
    16. Barelli, Paulo & Duggan, John, 2015. "Purification of Bayes Nash equilibrium with correlated types and interdependent payoffs," Games and Economic Behavior, Elsevier, vol. 94(C), pages 1-14.
    17. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    18. Sun, Xiang & Zeng, Yishu, 2020. "Perfect and proper equilibria in large games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 288-308.
    19. Khan, M. Ali & Rath, Kali P., 2009. "On games with incomplete information and the Dvoretsky-Wald-Wolfowitz theorem with countable partitions," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 830-837, December.
    20. Ghislain Herman Demeze-Jouatsa & Roland Pongou & Jean-Baptiste Tondji, 2024. "Justice, inclusion, and incentives," Journal of Theoretical Politics, , vol. 36(2), pages 101-131, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:201:y:2021:i:c:s0165176521000483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.