IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v75y2018icp108-115.html
   My bibliography  Save this article

Essential equilibrium in normal-form games with perturbed actions and payoffs

Author

Listed:
  • Carbonell-Nicolau, Oriol
  • Wohl, Nathan

Abstract

A Nash equilibrium of a normal-form game G is essential if it is robust to perturbations of G. A game is essential if all of its Nash equilibria are essential. This paper provides conditions on the primitives of a (possibly) discontinuous game that guarantee the generic existence of essential games. Unlike the extant literature, the present analysis allows for perturbations of the players’ action spaces, in addition to the standard payoff perturbations.

Suggested Citation

  • Carbonell-Nicolau, Oriol & Wohl, Nathan, 2018. "Essential equilibrium in normal-form games with perturbed actions and payoffs," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 108-115.
  • Handle: RePEc:eee:mateco:v:75:y:2018:i:c:p:108-115
    DOI: 10.1016/j.jmateco.2018.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406818300119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2018.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    2. Leo K. Simon, 1987. "Games with Discontinuous Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(4), pages 569-597.
    3. Carbonell-Nicolau, Oriol, 2010. "Essential equilibria in normal-form games," Journal of Economic Theory, Elsevier, vol. 145(1), pages 421-431, January.
    4. Philip Reny, 2011. "Strategic approximations of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 17-29, September.
    5. Yu, Jian, 1999. "Essential equilibria of n-person noncooperative games," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 361-372, April.
    6. Oriol Carbonell-Nicolau, 2015. "Further results on essential Nash equilibria in normal-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(2), pages 277-300, June.
    7. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sofía Correa & Juan Torres-Martínez, 2014. "Essential equilibria of large generalized games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 479-513, November.
    2. Oriol Carbonell-Nicolau, 2015. "Further results on essential Nash equilibria in normal-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(2), pages 277-300, June.
    3. Ram Sewak Dubey & Francesco Ruscitti, 2015. "A remark on the continuity of the Walras correspondence in pure exchange economies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 33-41, April.
    4. Vincenzo Scalzo, 2016. "Remarks on the existence and stability of some relaxed Nash equilibrium in strategic form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 571-586, March.
    5. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    6. Oriol Carbonell-Nicolau & Richard McLean, 2013. "Approximation results for discontinuous games with an application to equilibrium refinement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 1-26, September.
    7. Carbonell-Nicolau, Oriol, 2014. "On essential, (strictly) perfect equilibria," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 157-162.
    8. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    9. Neumann, Berenice Anne, 2022. "Essential stationary equilibria of mean field games with finite state and action space," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 85-91.
    10. Zhe Yang & Yan Ju, 2016. "Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games," Journal of Global Optimization, Springer, vol. 65(3), pages 563-573, July.
    11. Sebastián Cea-Echenique & Matías Fuentes, 2020. "On the continuity of the walras correspondence for distributional economies with an infinite dimensional commodity space," Working Papers hal-02430960, HAL.
    12. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    13. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    14. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    15. Vincenzo Scalzo, 2014. "On the existence of essential and trembling-hand perfect equilibria in discontinuous games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 1-12, April.
    16. Pavlo Prokopovych & Nicholas C. Yannelis, 2012. "On Uniform Conditions for the Existence of Mixed Strategy Equilibria," Discussion Papers 48, Kyiv School of Economics.
    17. Yu, Jian & Yang, Zhe & Wang, Neng-Fa, 2016. "Further results on structural stability and robustness to bounded rationality," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 49-53.
    18. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    19. Erik Balder, 2011. "An equilibrium closure result for discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 47-65, September.
    20. Oriol Carbonell-Nicolau & Richard McLean, 2014. "On the existence of Nash equilibrium in Bayesian games," Departmental Working Papers 201402, Rutgers University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:75:y:2018:i:c:p:108-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.