IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/201128.html
   My bibliography  Save this paper

Approximation Results for Discontinuous Games with an Application to Equilibrium Refinement

Author

Listed:
  • Oriol Carbonell-Nicolau

    (Rutgers University)

  • Richard McLean

    (Rutgers University)

Abstract

We provide approximation results for Nash equilibria in possibly discontinuous games when payoffs and strategy sets are perturbed, and compare these conditions to those considered in the related literature. We then prove existence results for a new "finitistic" infinite-game generalization of Selten's [17] notion of perfection, and study some of its properties. The existence results, which rely on the approximation theorems, relate existing notions of perfection to the new specification.

Suggested Citation

  • Oriol Carbonell-Nicolau & Richard McLean, 2011. "Approximation Results for Discontinuous Games with an Application to Equilibrium Refinement," Departmental Working Papers 201128, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:201128
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2011-28.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carmona, Guilherme, 2009. "An existence result for discontinuous games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1333-1340, May.
    2. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    3. Guilherme Carmona, 2011. "Understanding some recent existence results for discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 31-45, September.
    4. Leo K. Simon, 1987. "Games with Discontinuous Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(4), pages 569-597.
    5. Andrew McLennan & Paulo K. Monteiro & Rabee Tourky, 2011. "Games With Discontinuous Payoffs: A Strengthening of Reny's Existence Theorem," Econometrica, Econometric Society, vol. 79(5), pages 1643-1664, September.
    6. Oriol Carbonell-Nicolau & Richard McLean, 2013. "Approximation results for discontinuous games with an application to equilibrium refinement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 1-26, September.
    7. Al-Najjar, Nabil, 1995. "Strategically stable equilibria in games with infinitely many pure strategies," Mathematical Social Sciences, Elsevier, vol. 29(2), pages 151-164, April.
    8. Carbonell-Nicolau, Oriol, 2011. "Perfect and limit admissible perfect equilibria in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 531-540.
    9. Philip Reny, 2011. "Strategic approximations of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 17-29, September.
    10. Guilherme Carmona, 2011. "Symposium on: Existence of Nash equilibria in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 1-4, September.
    11. Bagh, Adib, 2010. "Variational convergence: Approximation and existence of equilibria in discontinuous games," Journal of Economic Theory, Elsevier, vol. 145(3), pages 1244-1268, May.
    12. Carbonell-Nicolau, Oriol, 2011. "On the existence of pure-strategy perfect equilibrium in discontinuous games," Games and Economic Behavior, Elsevier, vol. 71(1), pages 23-48, January.
    13. Adib Bagh & Alejandro Jofre, 2006. "Reciprocal Upper Semicontinuity and Better Reply Secure Games: A Comment," Econometrica, Econometric Society, vol. 74(6), pages 1715-1721, November.
    14. Oriol Carbonell-Nicolau, 2011. "The Existence of Perfect Equilibrium in Discontinuous Games," Games, MDPI, vol. 2(3), pages 1-22, July.
    15. Simon, Leo K & Stinchcombe, Maxwell B, 1995. "Equilibrium Refinement for Infinite Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1421-1443, November.
    16. Pavlo Prokopovych, 2011. "On equilibrium existence in payoff secure games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 5-16, September.
    17. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    18. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    19. Lebrun, Bernard, 1996. "Existence of an Equilibrium in First Price Auctions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(3), pages 421-443, April.
    20. Luciano Castro, 2011. "Equilibrium existence and approximation of regular discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 67-85, September.
    21. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, II: Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 27-41.
    22. Bajoori, Elnaz & Flesch, János & Vermeulen, Dries, 2013. "Perfect equilibrium in games with compact action spaces," Games and Economic Behavior, Elsevier, vol. 82(C), pages 490-502.
    23. Yu, Jian, 1999. "Essential equilibria of n-person noncooperative games," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 361-372, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    2. Carbonell-Nicolau, Oriol, 2014. "On essential, (strictly) perfect equilibria," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 157-162.
    3. Oriol Carbonell-Nicolau & Richard McLean, 2013. "Approximation results for discontinuous games with an application to equilibrium refinement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 1-26, September.
    4. Oriol Carbonell-Nicolau & Richard McLean, 2015. "On equilibrium refinements in supermodular games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 869-890, November.
    5. Alejandro Saporiti, 2014. "Power sharing and electoral equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(3), pages 705-729, April.
    6. He, Wei & Yannelis, Nicholas C., 2016. "Existence of equilibria in discontinuous Bayesian games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 181-194.
    7. Oriol Carbonell-Nicolau, 2015. "Further results on essential Nash equilibria in normal-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(2), pages 277-300, June.
    8. Oriol Carbonell-Nicolau, 2021. "Perfect equilibria in games of incomplete information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1591-1648, June.
    9. Carbonell-Nicolau, Oriol, 2011. "Perfect and limit admissible perfect equilibria in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 531-540.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
    2. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    3. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    4. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    5. Oriol Carbonell-Nicolau, 2015. "Further results on essential Nash equilibria in normal-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(2), pages 277-300, June.
    6. Rabia Nessah, 2013. "Weakly Continuous Security in Discontinuous and Nonquasiconcave Games: Existence and Characterization," Working Papers 2013-ECO-20, IESEG School of Management.
    7. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    8. Zhiwei Liu & Nicholas C. Yannelis, 2013. "On Discontinuous Games with Asymmetric Information," Economics Discussion Paper Series 1318, Economics, The University of Manchester.
    9. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    10. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    11. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    12. Philippe Bich & Rida Laraki, 2012. "A Unified Approach to Equilibrium Existence in Discontinuous Strategic Games," Documents de travail du Centre d'Economie de la Sorbonne 12040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00846143, HAL.
    14. Vincenzo Scalzo, 2016. "Remarks on the existence and stability of some relaxed Nash equilibrium in strategic form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 571-586, March.
    15. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Working Papers hal-00846143, HAL.
    16. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    17. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    18. Philippe Bich & Rida Laraki, 2012. "A Unified Approach to Equilibrium Existence in Discontinuous Strategic Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00717135, HAL.
    19. Carmona, Guilherme, 2019. "On the existence of limit admissible equilibria in discontinuous games," Journal of Mathematical Economics, Elsevier, vol. 81(C), pages 14-21.
    20. Allison, Blake A. & Bagh, Adib & Lepore, Jason J., 2018. "Sufficient conditions for weak reciprocal upper semi-continuity in mixed extensions of games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 99-107.

    More about this item

    Keywords

    discontinuous game; Nash equilibrium correspondence; payoff security; trembling-hand perfect equilibrium; limit-of-finite perfect equilibrium;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/derutus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.