IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v57y2014i3p479-513.html
   My bibliography  Save this article

Essential equilibria of large generalized games

Author

Listed:
  • Sofía Correa
  • Juan Torres-Martínez

Abstract

We characterize the essential stability of games with a continuum of players, where strategy profiles may affect objective functions and admissible strategies. Taking into account the perturbations defined by a continuous mapping from a complete metric space of parameters to the space of continuous games, we prove that essential stability is a generic property and every game has a stable subset of equilibria. These results are extended to discontinuous large generalized games assuming that only payoff functions are subject to perturbations. We apply our results in an electoral game with a continuum of Cournot-Nash equilibria, where the unique essential equilibrium is that only politically engaged players participate in the electoral process. In addition, employing our results for discontinuous games, we determine the stability properties of competitive prices in large economies. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Sofía Correa & Juan Torres-Martínez, 2014. "Essential equilibria of large generalized games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 479-513, November.
  • Handle: RePEc:spr:joecth:v:57:y:2014:i:3:p:479-513
    DOI: 10.1007/s00199-014-0821-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-014-0821-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00199-014-0821-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.
    2. Paulo Barelli & Idione Meneghel, 2013. "A Note on the Equilibrium Existence Problem in Discontinuous Games," Econometrica, Econometric Society, vol. 81(2), pages 813-824, March.
    3. Yong-Hui Zhou & Jian Yu & Shu-Wen Xiang, 2007. "Essential stability in games with infinitely many pure strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 35(4), pages 493-503, April.
    4. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    5. Riascos Villegas, Alvaro & Torres-Martínez, Juan Pablo, 2013. "On pure strategy equilibria in large generalized games," MPRA Paper 46840, University Library of Munich, Germany.
    6. Carbonell-Nicolau, Oriol, 2010. "Essential equilibria in normal-form games," Journal of Economic Theory, Elsevier, vol. 145(1), pages 421-431, January.
    7. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    8. Al-Najjar, Nabil, 1995. "Strategically stable equilibria in games with infinitely many pure strategies," Mathematical Social Sciences, Elsevier, vol. 29(2), pages 151-164, April.
    9. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    10. Philip Reny, 2011. "Strategic approximations of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 17-29, September.
    11. Barlo, Mehmet & Carmona, Guilherme, 2015. "Strategic behavior in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 134-144.
    12. Hillas, John, 1990. "On the Definition of the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 58(6), pages 1365-1390, November.
    13. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    14. Yu, Jian, 1999. "Essential equilibria of n-person noncooperative games," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 361-372, April.
    15. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    16. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noguchi, Mitsunori, 2021. "Essential stability of the alpha cores of finite games with incomplete information," Mathematical Social Sciences, Elsevier, vol. 110(C), pages 34-43.
    2. Neumann, Berenice Anne, 2022. "Essential stationary equilibria of mean field games with finite state and action space," Mathematical Social Sciences, Elsevier, vol. 120(C), pages 85-91.
    3. Sofía Correa & Juan Pablo Torres-Martínez, 2016. "Large Multi-Objective Generalized Games: Existence and Essential Stability of Equilibria," Working Papers wp430, University of Chile, Department of Economics.
    4. Vincenzo Scalzo, 2016. "Remarks on the existence and stability of some relaxed Nash equilibrium in strategic form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 571-586, March.
    5. Sebastián Cea-Echenique & Matías Fuentes, 2020. "On the continuity of the walras correspondence for distributional economies with an infinite dimensional commodity space," Working Papers hal-02430960, HAL.
    6. Erhan Bayraktar & Alexander Munk, 2016. "High-Roller Impact: A Large Generalized Game Model of Parimutuel Wagering," Papers 1605.03653, arXiv.org, revised Mar 2017.
    7. Cea-Echenique, Sebastián & Fuentes, Matías, 2024. "On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space," Mathematical Social Sciences, Elsevier, vol. 129(C), pages 61-69.
    8. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Correa, Sofía & Torres-Martínez, Juan Pablo, 2012. "Essential stability for large generalized games," MPRA Paper 36625, University Library of Munich, Germany.
    2. Oriol Carbonell-Nicolau, 2015. "Further results on essential Nash equilibria in normal-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(2), pages 277-300, June.
    3. Vincenzo Scalzo, 2014. "On the existence of essential and trembling-hand perfect equilibria in discontinuous games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 1-12, April.
    4. Vincenzo Scalzo, 2016. "Remarks on the existence and stability of some relaxed Nash equilibrium in strategic form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 571-586, March.
    5. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    6. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    7. Carbonell-Nicolau, Oriol & Wohl, Nathan, 2018. "Essential equilibrium in normal-form games with perturbed actions and payoffs," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 108-115.
    8. Scalzo, Vincenzo, 2020. "Doubly Strong Equilibrium," MPRA Paper 99329, University Library of Munich, Germany.
    9. Carbonell-Nicolau, Oriol, 2011. "On strategic stability in discontinuous games," Economics Letters, Elsevier, vol. 113(2), pages 120-123.
    10. Sofía Correa & Juan Pablo Torres-Martínez, 2012. "Essential Stability for Large Generalized Games," Working Papers wp362, University of Chile, Department of Economics.
    11. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    12. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    13. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    14. Carbonell-Nicolau, Oriol, 2010. "Essential equilibria in normal-form games," Journal of Economic Theory, Elsevier, vol. 145(1), pages 421-431, January.
    15. Zhe Yang & Yan Ju, 2016. "Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games," Journal of Global Optimization, Springer, vol. 65(3), pages 563-573, July.
    16. Oriol Carbonell-Nicolau & Richard McLean, 2013. "Approximation results for discontinuous games with an application to equilibrium refinement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 1-26, September.
    17. Carmona, Guilherme & Podczeck, Konrad, 2018. "Invariance of the equilibrium set of games with an endogenous sharing rule," Journal of Economic Theory, Elsevier, vol. 177(C), pages 1-33.
    18. Ram Sewak Dubey & Francesco Ruscitti, 2015. "A remark on the continuity of the Walras correspondence in pure exchange economies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 33-41, April.
    19. Zhe Yang, 2017. "Essential stability of $$\alpha $$ α -core," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 13-28, March.
    20. Carbonell-Nicolau, Oriol, 2014. "On essential, (strictly) perfect equilibria," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 157-162.

    More about this item

    Keywords

    Large generalized games; Essential equilibria; Essential sets and components; C62; C72; C02;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:57:y:2014:i:3:p:479-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.