IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v52y2014icp87-97.html
   My bibliography  Save this article

On the existence of mixed strategy Nash equilibria

Author

Listed:
  • Prokopovych, Pavlo
  • Yannelis, Nicholas C.

Abstract

The focus of this paper is on developing verifiable sufficient conditions for the existence of a mixed strategy Nash equilibrium for both diagonally transfer continuous and better-reply secure games. First, we show that employing the concept of diagonal transfer continuity in place of better-reply security might be advantageous when the existence of a mixed strategy Nash equilibrium is concerned. Then, we study equilibrium existence in better-reply secure games possessing a payoff secure mixed extension. With the aid of an example, we show that such games need not have mixed strategy Nash equilibria. We provide geometric conditions for the mixed extension of a two-person game that is reciprocally upper semicontinuous and uniformly payoff secure to be better-reply secure.

Suggested Citation

  • Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
  • Handle: RePEc:eee:mateco:v:52:y:2014:i:c:p:87-97
    DOI: 10.1016/j.jmateco.2014.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406814000615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2014.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Paulo Barelli & Idione Meneghel, 2013. "A Note on the Equilibrium Existence Problem in Discontinuous Games," Econometrica, Econometric Society, vol. 81(2), pages 813-824, March.
    3. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," PSE-Ecole d'économie de Paris (Postprint) hal-00750953, HAL.
    4. Simon, Leo K & Zame, William R, 1990. "Discontinuous Games and Endogenous Sharing Rules," Econometrica, Econometric Society, vol. 58(4), pages 861-872, July.
    5. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Post-Print halshs-00426402, HAL.
    6. Page, Frank Jr. & Monteiro, Paulo K., 2003. "Three principles of competitive nonlinear pricing," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 63-109, February.
    7. Michael R. Baye & Dan Kovenock & Casper G. Vries, 1996. "The all-pay auction with complete information," Springer Books, in: Roger D. Congleton & Arye L. Hillman & Kai A. Konrad (ed.), 40 Years of Research on Rent Seeking 1, pages 209-223, Springer.
    8. Pavlo Prokopovych, 2011. "On equilibrium existence in payoff secure games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 5-16, September.
    9. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    10. Baye, Michael R & Kovenock, Dan & de Vries, Casper G, 1994. "The Solution to the Tullock Rent-Seeking Game When R Is Greater Than 2: Mixed-Strategy Equilibria and Mean Dissipation Rates," Public Choice, Springer, vol. 81(3-4), pages 363-380, December.
    11. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    12. Guilherme Carmona, 2011. "Understanding some recent existence results for discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 31-45, September.
    13. Aliprantis, Charalambos D. & Glycopantis, Dionysius & Puzzello, Daniela, 2006. "The joint continuity of the expected payoff functions," Journal of Mathematical Economics, Elsevier, vol. 42(2), pages 121-130, April.
    14. Luciano Castro, 2011. "Equilibrium existence and approximation of regular discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 67-85, September.
    15. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, II: Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 27-41.
    16. Monteiro, Paulo Klinger & Page Jr, Frank H., 2007. "Uniform payoff security and Nash equilibrium in compact games," Journal of Economic Theory, Elsevier, vol. 134(1), pages 566-575, May.
    17. Leo K. Simon, 1987. "Games with Discontinuous Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(4), pages 569-597.
    18. Andrew McLennan & Paulo K. Monteiro & Rabee Tourky, 2011. "Games With Discontinuous Payoffs: A Strengthening of Reny's Existence Theorem," Econometrica, Econometric Society, vol. 79(5), pages 1643-1664, September.
    19. Amir, Rabah, 2005. "Ordinal versus cardinal complementarity: The case of Cournot oligopoly," Games and Economic Behavior, Elsevier, vol. 53(1), pages 1-14, October.
    20. Baye, M.R. & Kovenock, D. & De Vries, C.G., 1993. "The Solution to the Tullock Rent-Seeking Game when R > 2: Mixed Strategy Equilibria and Mean Dissipation Rates," Papers 10-93-9, Pennsylvania State - Department of Economics.
    21. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Post-Print hal-00750953, HAL.
    22. Bettina Klose & Dan Kovenock, 2015. "The all-pay auction with complete information and identity-dependent externalities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 1-19, May.
    23. Duggan, John, 2007. "Equilibrium existence for zero-sum games and spatial models of elections," Games and Economic Behavior, Elsevier, vol. 60(1), pages 52-74, July.
    24. Michael R. Baye & Guoqiang Tian & Jianxin Zhou, 1993. "Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 935-948.
    25. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Documents de travail du Centre d'Economie de la Sorbonne 09061, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    26. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00750953, HAL.
    27. Guilherme Carmona, 2005. "On the existence of equilibria in discontinuous games: three counterexamples," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 181-187, June.
    28. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    29. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00426402, HAL.
    30. Philip Reny, 2011. "Strategic approximations of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 48(1), pages 17-29, September.
    31. Luciano I. de Castro, 2008. "Equilibria Existence in Regular Discontinuous Games," Discussion Papers 1463, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    32. Richard Ball, 1999. "Discontinuity and non-existence of equilibrium in the probabilistic spatial voting model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(4), pages 533-555.
    33. Bagh, Adib, 2010. "Variational convergence: Approximation and existence of equilibria in discontinuous games," Journal of Economic Theory, Elsevier, vol. 145(3), pages 1244-1268, May.
    34. Carbonell-Nicolau, Oriol & Ok, Efe A., 2007. "Voting over income taxation," Journal of Economic Theory, Elsevier, vol. 134(1), pages 249-286, May.
    35. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    36. Adib Bagh & Alejandro Jofre, 2006. "Reciprocal Upper Semicontinuity and Better Reply Secure Games: A Comment," Econometrica, Econometric Society, vol. 74(6), pages 1715-1721, November.
    37. Pavlo Prokopovych, 2013. "The single deviation property in games with discontinuous payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(2), pages 383-402, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    2. Wei He, 2022. "Discontinuous stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 827-858, June.
    3. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    4. Bettina Klose & Dan Kovenock, 2015. "The all-pay auction with complete information and identity-dependent externalities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(1), pages 1-19, May.
    5. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    6. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    7. Shiran Rachmilevitch, 2023. "Symmetric games with only asymmetric equilibria: examples with continuous payoff functions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(1), pages 65-68, April.
    8. David K. Levine & Andrea Mattozzi, 2022. "Success in contests," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 595-624, April.
    9. He, Wei & Yannelis, Nicholas C., 2016. "Existence of equilibria in discontinuous Bayesian games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 181-194.
    10. Blake A. Allison & Jason J. Lepore, 2024. "Invariant Equilibrium in Discontinuous Bayesian Games," Games, MDPI, vol. 15(3), pages 1-14, May.
    11. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    12. Prokopovych, Pavlo & Yannelis, Nicholas C., 2019. "On monotone approximate and exact equilibria of an asymmetric first-price auction with affiliated private information," Journal of Economic Theory, Elsevier, vol. 184(C).
    13. Ori Haimanko, 2021. "Bayesian Nash equilibrium existence in (almost continuous) contests," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1231-1258, April.
    14. Allison, Blake A. & Bagh, Adib & Lepore, Jason J., 2018. "Sufficient conditions for weak reciprocal upper semi-continuity in mixed extensions of games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 99-107.
    15. Prokopovych, Pavlo & Yannelis, Nicholas C., 2017. "On strategic complementarities in discontinuous games with totally ordered strategies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 147-153.
    16. Oriol Carbonell-Nicolau & Richard P. McLean, 2018. "On the Existence of Nash Equilibrium in Bayesian Games," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 100-129, February.
    17. J. E. Abdou & E. Safatly & B. Nakhle & A. El Khoury, 2017. "High-Dimensional Nash Equilibria Problems and Tensors Applications," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-25, September.
    18. Oriol Carbonell-Nicolau & Richard P. McLean, 2019. "Nash and Bayes–Nash equilibria in strategic-form games with intransitivities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 935-965, November.
    19. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    20. Olszewski, Wojciech & Siegel, Ron, 2023. "Equilibrium existence in games with ties," Theoretical Economics, Econometric Society, vol. 18(2), May.
    21. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavlo Prokopovych & Nicholas C. Yannelis, 2012. "On Uniform Conditions for the Existence of Mixed Strategy Equilibria," Discussion Papers 48, Kyiv School of Economics.
    2. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    3. Pavlo Prokopovych, 2016. "Majorized correspondences and equilibrium existence in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 541-552, March.
    4. Guilherme Carmona & Konrad Podczeck, 2016. "Existence of Nash equilibrium in ordinal games with discontinuous preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 457-478, March.
    5. He, Wei & Yannelis, Nicholas C., 2015. "Discontinuous games with asymmetric information: An extension of Reny's existence theorem," Games and Economic Behavior, Elsevier, vol. 91(C), pages 26-35.
    6. Guilherme Carmona, 2016. "Reducible equilibrium properties: comments on recent existence results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 431-455, March.
    7. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    8. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    9. Rabia Nessah, 2013. "Weakly Continuous Security in Discontinuous and Nonquasiconcave Games: Existence and Characterization," Working Papers 2013-ECO-20, IESEG School of Management.
    10. Zhiwei Liu & Nicholas C. Yannelis, 2013. "On Discontinuous Games with Asymmetric Information," Economics Discussion Paper Series 1318, Economics, The University of Manchester.
    11. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    12. Oriol Carbonell-Nicolau, 2015. "Further results on essential Nash equilibria in normal-form games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 59(2), pages 277-300, June.
    13. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    14. Alejandro Saporiti, 2014. "Power sharing and electoral equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(3), pages 705-729, April.
    15. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    16. Pavlo Prokopovych, 2013. "The single deviation property in games with discontinuous payoffs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(2), pages 383-402, June.
    17. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    18. Iskakov, M. & Iskakov, A. & d'Aspremont, C., 2018. "Games for cautious players: The Equilibrium in Secure Strategies," Games and Economic Behavior, Elsevier, vol. 110(C), pages 58-70.
    19. Paulo Barelli & Idione Meneghel, 2013. "A Note on the Equilibrium Existence Problem in Discontinuous Games," Econometrica, Econometric Society, vol. 81(2), pages 813-824, March.
    20. Harks, Tobias & Klimm, Max, 2015. "Equilibria in a class of aggregative location games," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 211-220.

    More about this item

    Keywords

    Discontinuous game; Diagonally transfer continuous game; Better-reply secure game; Mixed strategy equilibrium; Transfer lower semicontinuity;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:52:y:2014:i:c:p:87-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.