IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v129y2024icp61-69.html
   My bibliography  Save this article

On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space

Author

Listed:
  • Cea-Echenique, Sebastián
  • Fuentes, Matías

Abstract

Distributional economies are defined by a probability distribution in the space of characteristics where the commodity space is an ordered separable Banach space. We characterize the continuity of the equilibrium correspondence and an associated stability concept which allows us to give a positive answer to an open question about the continuity of the Walras correspondence in infinite-dimensional spaces. As a byproduct, we study a stability concept where differentiability assumptions are not required, as is usual in the literature on regularity. Moreover, since distributional economies do not specify a space of agents, our setting encompasses several results in the literature on large economies.

Suggested Citation

  • Cea-Echenique, Sebastián & Fuentes, Matías, 2024. "On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space," Mathematical Social Sciences, Elsevier, vol. 129(C), pages 61-69.
  • Handle: RePEc:eee:matsoc:v:129:y:2024:i:c:p:61-69
    DOI: 10.1016/j.mathsocsci.2024.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489624000362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2024.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Konard Podczeck, 1997. "Markets with infinitely many commodities and a continuum of agents with non-convex preferences (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(3), pages 385-426.
    2. Jang, Hyo Seok & Lee, Sangjik, 2020. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 57-64.
    3. Debreu, Gerard, 1970. "Economies with a Finite Set of Equilibria," Econometrica, Econometric Society, vol. 38(3), pages 387-392, May.
    4. Hart, Sergiu & Hildenbrand, Werner & Kohlberg, Elon, 1974. "On equilibrium allocations as distributions on the commodity space," Journal of Mathematical Economics, Elsevier, vol. 1(2), pages 159-166, August.
    5. Back, Kerry, 1986. "Concepts of similarity for utility functions," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 129-142, April.
    6. Kannai, Yakar, 1970. "Continuity Properties of the Core of a Market," Econometrica, Econometric Society, vol. 38(6), pages 791-815, November.
    7. Graciela Chichilnisky, 1980. "Continuous Representation of Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(5), pages 959-963.
    8. Hildenbrand, W & Mertens, J F, 1972. "Upper Hemi-Continuity of the Equilibrium-Set Correspondence for Pure Exchange Economies," Econometrica, Econometric Society, vol. 40(1), pages 99-108, January.
    9. Mas-Colell, Andreu, 1977. "Indivisible commodities and general equilibrium theory," Journal of Economic Theory, Elsevier, vol. 16(2), pages 443-456, December.
    10. Hyo Seok Jang & Sangjik Lee, 2019. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Papers 1904.07444, arXiv.org, revised Feb 2020.
    11. Grodal, Birgit, 1974. "A note on the space of preference relations," Journal of Mathematical Economics, Elsevier, vol. 1(3), pages 279-294, December.
    12. Takashi Suzuki, 2020. "Fundamentals of General Equilibrium Analysis," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 11808, February.
    13. Carbonell-Nicolau, Oriol, 2010. "Essential equilibria in normal-form games," Journal of Economic Theory, Elsevier, vol. 145(1), pages 421-431, January.
    14. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
    15. Balasko, Yves, 1975. "The Graph of the Walras Correspondence," Econometrica, Econometric Society, vol. 43(5-6), pages 907-912, Sept.-Nov.
    16. HILDENBRAND, Werner, 1970. "On economies with many agents," LIDAM Reprints CORE 61, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Ram Sewak Dubey & Francesco Ruscitti, 2015. "A remark on the continuity of the Walras correspondence in pure exchange economies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 33-41, April.
    18. Mas-Colell, Andreu, 1977. "On the Continuous Representation of Preorders," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 509-513, June.
    19. Sofía Correa & Juan Torres-Martínez, 2014. "Essential equilibria of large generalized games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 479-513, November.
    20. Yu, Jian, 1999. "Essential equilibria of n-person noncooperative games," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 361-372, April.
    21. Hildenbrand, Werner, 1970. "On economies with many agents," Journal of Economic Theory, Elsevier, vol. 2(2), pages 161-188, June.
    22. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    23. Suzuki, Takashi, 2013. "Core and competitive equilibria of a coalitional exchange economy with infinite time horizon," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 234-244.
    24. Bewley, Truman F, 1973. "The Equality of the Core and the Set of Equilibria in Economies with Infinitely Many Commodities and a Continuum of Agents," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 383-394, June.
    25. Lee, Sangjik, 2013. "Competitive Equilibrium With An Atomless Measure Space Of Agents And Infinite Dimensional Commodity Spaces Without Convex And Complete Preferences," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 54(2), pages 221-230, December.
    26. Noguchi, Mitsunori, 2000. "Economies with a measure space of agents and a separable commodity space," Mathematical Social Sciences, Elsevier, vol. 40(2), pages 157-173, September.
    27. Noguchi, Mitsunori, 1997. "Economies with a continuum of consumers, a continuum of suppliers and an infinite dimensional commodity space," Journal of Mathematical Economics, Elsevier, vol. 27(1), pages 1-21, February.
    28. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    29. Hildenbrand, Kurt, 1972. "Continuity of the equilibrium-set correspondence," Journal of Economic Theory, Elsevier, vol. 5(1), pages 152-162, August.
    30. BEWLEY, Truman F., 1972. "Existence of equilibria in economies with infinitely many commodities," LIDAM Reprints CORE 122, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niccolò Urbinati, 2023. "The Walrasian objection mechanism and Mas-Colell’s bargaining set in economies with many commodities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 45-68, July.
    2. Niccolò Urbinati, 2020. "Walrasian objection mechanism and Mas Colell's bargaining set in economies with many commodities," Working Papers 07, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    3. Motoki Otsuka, 2024. "The existence of Walrasian equilibrium: infinitely many commodities, measure space of agents, and discontinuous preferences," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 12(2), pages 119-140, December.
    4. Ram Sewak Dubey & Francesco Ruscitti, 2015. "A remark on the continuity of the Walras correspondence in pure exchange economies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 33-41, April.
    5. Christopher P. Chambers & Federico Echenique & Nicolas S. Lambert, 2021. "Recovering Preferences From Finite Data," Econometrica, Econometric Society, vol. 89(4), pages 1633-1664, July.
    6. Camelia Bejan & Florin Bidian, 2012. "Ownership structure and efficiency in large economies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 571-602, August.
    7. He, Wei & Sun, Yeneng, 2022. "Conditional expectation of Banach valued correspondences and economic applications," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    8. Beth Allen, 1996. "A remark on a social choice problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 13(1), pages 11-16, January.
    9. Christopher P. Chambers & Federico Echenique & Nicolas S. Lambert, 2018. "Preference Identification," Papers 1807.11585, arXiv.org.
    10. Jang, Hyo Seok & Lee, Sangjik, 2020. "Equilibria in a large production economy with an infinite dimensional commodity space and price dependent preferences," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 57-64.
    11. Bernard Cornet & V. Filipe Martins-Da-Rocha, 2021. "Fatou's Lemma for Unbounded Gelfand Integrable Mappings," Post-Print hal-03506933, HAL.
    12. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    13. Guilherme Carmona, 2003. "Nash and Limit Equilibria of Games with a Continuum of Players," Game Theory and Information 0311004, University Library of Munich, Germany.
    14. Castro, Sofia B.S.D. & Dakhlia, Sami & Gothen, Peter B., 2010. "Direct perturbations of aggregate excess demand," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 562-571, July.
    15. Guilherme Carmona & Konrad Podczeck, 2022. "Approximation and characterization of Nash equilibria of large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 679-694, April.
    16. Michael Zierhut, 2021. "Generic regularity of differentiated product oligopolies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(1), pages 341-374, February.
    17. João Correia-da-Silva & Carlos Hervés-Beloso, 2007. "Private Information: Similarity as Compatibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(3), pages 395-407, March.
    18. Achille Basile & Maria Gabriella Graziano & Ciro Tarantino, 2018. "Coalitional fairness with participation rates," Journal of Economics, Springer, vol. 123(2), pages 97-139, March.
    19. Carbonell-Nicolau, Oriol, 2014. "On essential, (strictly) perfect equilibria," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 157-162.
    20. Sun, Xiang & Sun, Yeneng & Yu, Haomiao, 2020. "The individualistic foundation of equilibrium distribution," Journal of Economic Theory, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:129:y:2024:i:c:p:61-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.