IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v89y2013icp69-85.html
   My bibliography  Save this article

Modified projective phase synchronization of chaotic complex nonlinear systems

Author

Listed:
  • Mahmoud, Emad E.

Abstract

This paper introduces the concept of Modified Projective Phase Synchronization (MPPS) for interacting chaotic systems with complex variables. The idea is that the number of effective state variables can be increased by treating the real and imaginary parts separately. On the basis of the Lyapunov stability theory, a scheme is designed to realize the new form of chaotic synchronization, and we demonstrate how chaotic complex systems in a master–slave configuration can be synchronized to a constant scaling matrix. The speed and accuracy of the synchronization are illustrated by means of computer simulation.

Suggested Citation

  • Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
  • Handle: RePEc:eee:matcom:v:89:y:2013:i:c:p:69-85
    DOI: 10.1016/j.matcom.2013.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413000426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2013.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guo-Hui, 2007. "Generalized projective synchronization between Lorenz system and Chen’s system," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1454-1458.
    2. GAMAL M. MAHMOUD & M. A. Al-KASHIF & SHABAN A. ALY, 2007. "Basic Properties And Chaotic Synchronization Of Complex Lorenz System," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 253-265.
    3. P. Kuznetsov, Sergey & Mosekilde, Erik, 2001. "Coupled map lattices with complex order parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 299-316.
    4. Gamal M. Mahmoud & Mansour E. Ahmed & Emad E. Mahmoud, 2008. "Analysis Of Hyperchaotic Complex Lorenz Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(10), pages 1477-1494.
    5. Li, Guo-Hui, 2007. "Modified projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1786-1790.
    6. Mahmoud, Gamal M. & Mahmoud, Emad E., 2010. "Synchronization and control of hyperchaotic complex Lorenz system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2286-2296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soriano-Sánchez, A.G. & Posadas-Castillo, C. & Platas-Garza, M.A. & Diaz-Romero, D.A., 2015. "Performance improvement of chaotic encryption via energy and frequency location criteria," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 112(C), pages 14-27.
    2. Xuan-Toa Tran & Hee-Jun Kang, 2017. "Fixed-Time Complex Modified Function Projective Lag Synchronization of Chaotic (Hyperchaotic) Complex Systems," Complexity, Hindawi, vol. 2017, pages 1-9, July.
    3. Emad E. Mahmoud & M. Higazy & Turkiah M. Al-Harthi, 2019. "A New Nine-Dimensional Chaotic Lorenz System with Quaternion Variables: Complicated Dynamics, Electronic Circuit Design, Anti-Anticipating Synchronization, and Chaotic Masking Communication Applicatio," Mathematics, MDPI, vol. 7(10), pages 1-26, September.
    4. Wu, Xiangjun & Zhu, Changjiang & Kan, Haibin, 2015. "An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 201-214.
    5. Hussain, Sajid & Al-Alili, Ali, 2016. "A new approach for model validation in solar radiation using wavelet, phase and frequency coherence analysis," Applied Energy, Elsevier, vol. 164(C), pages 639-649.
    6. Mahmoud, Gamal M. & Mahmoud, Emad E. & Arafa, Ayman A., 2018. "Synchronization of time delay systems with non-diagonal complex scaling functions," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 86-95.
    7. Fangfang Zhang & Rui Gao & Zhe Huang & Cuimei Jiang & Yawen Chen & Haibo Zhang, 2022. "Complex Modified Projective Difference Function Synchronization of Coupled Complex Chaotic Systems for Secure Communication in WSNs," Mathematics, MDPI, vol. 10(7), pages 1-14, April.
    8. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    9. Emad E. Mahmoud & Fatimah S. Abood, 2017. "A New Nonlinear Chaotic Complex Model and Its Complex Antilag Synchronization," Complexity, Hindawi, vol. 2017, pages 1-13, August.
    10. Mahmoud, Emad E. & AL-Harthi, Bushra H., 2020. "A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    12. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    13. Xuan-Bing Yang & Yi-Gang He & Chun-Lai Li, 2018. "Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System," Complexity, Hindawi, vol. 2018, pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud, Gamal M. & Mahmoud, Emad E., 2010. "Synchronization and control of hyperchaotic complex Lorenz system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2286-2296.
    2. Li Xiong & Zhenlai Liu & Xinguo Zhang, 2017. "Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System," Complexity, Hindawi, vol. 2017, pages 1-23, November.
    3. Runzi, Luo & Zhengmin, Wei, 2009. "Adaptive function projective synchronization of unified chaotic systems with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1266-1272.
    4. Mahmoud, Emad E. & AL-Harthi, Bushra H., 2020. "A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Sun, Junwei & Guo, Jinchao & Yang, Cunxiang & Zheng, Anping & Zhang, Xuncai, 2015. "Adaptive generalized hybrid function projective dislocated synchronization of new four-dimensional uncertain chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 304-314.
    6. Du, Hongyue & Zeng, Qingshuang & Wang, Changhong, 2009. "Modified function projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2399-2404.
    7. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    8. Xu, Yuhua & Zhou, Wuneng & Fang, Jian-an, 2009. "Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lü chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1305-1315.
    9. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    10. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    11. Wang, Haijun & Dong, Guili, 2019. "New dynamics coined in a 4-D quadratic autonomous hyper-chaotic system," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 272-286.
    12. Wang, Cong & Zhang, Hong-li & Fan, Wen-hui, 2017. "Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 14-21.
    13. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2021. "Exponential synchronization of fractional-order complex chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    14. Abdelhameed M. Nagy & Abdellatif Ben Makhlouf & Abdulaziz Alsenafi & Fares Alazemi, 2021. "Combination Synchronization of Fractional Systems Involving the Caputo–Hadamard Derivative," Mathematics, MDPI, vol. 9(21), pages 1-14, November.
    15. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    16. Zuoxun Wang & Wenzhu Zhang & Lei Ma & Guijuan Wang, 2022. "Several Control Problems of a Class of Complex Nonlinear Systems Based on UDE," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    17. Yu Liu & Yan Zhou & Biyao Guo, 2023. "Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    18. Nguyen, Le Hoa & Hong, Keum-Shik, 2011. "Synchronization of coupled chaotic FitzHugh–Nagumo neurons via Lyapunov functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 590-603.
    19. Remus-Daniel Ene & Camelia Pop & Camelia Petrişor, 2020. "Systematic Review of Geometrical Approaches and Analytical Integration for Chen’s System," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
    20. Wu, Xiangjun & Zhu, Changjiang & Kan, Haibin, 2015. "An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 201-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:89:y:2013:i:c:p:69-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.