IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2781-d670739.html
   My bibliography  Save this article

Combination Synchronization of Fractional Systems Involving the Caputo–Hadamard Derivative

Author

Listed:
  • Abdelhameed M. Nagy

    (Department of Mathematics, Faculty of Science, Kuwait University, Safat 13060, Kuwait
    Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt)

  • Abdellatif Ben Makhlouf

    (Department of Mathematics, College of Science, Jouf University, Sakaka 72388, Saudi Arabia)

  • Abdulaziz Alsenafi

    (Department of Mathematics, Faculty of Science, Kuwait University, Safat 13060, Kuwait)

  • Fares Alazemi

    (Department of Mathematics, Faculty of Science, Kuwait University, Safat 13060, Kuwait)

Abstract

The main aim of this paper is to investigate the combination synchronization phenomena of various fractional-order systems using the scaling matrix. For this purpose, the combination synchronization is performed by considering two drive systems and one response system. We show that the combination synchronization phenomenon is achieved theoretically. Moreover, numerical simulations are carried out to confirm and validate the obtained theoretical results.

Suggested Citation

  • Abdelhameed M. Nagy & Abdellatif Ben Makhlouf & Abdulaziz Alsenafi & Fares Alazemi, 2021. "Combination Synchronization of Fractional Systems Involving the Caputo–Hadamard Derivative," Mathematics, MDPI, vol. 9(21), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2781-:d:670739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Chen & Xin Li, 2007. "Function Projective Synchronization Between Two Identical Chaotic Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 883-888.
    2. Runzi, Luo & Zhengmin, Wei, 2009. "Adaptive function projective synchronization of unified chaotic systems with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1266-1272.
    3. Li, Guo-Hui, 2007. "Modified projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1786-1790.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Junwei & Guo, Jinchao & Yang, Cunxiang & Zheng, Anping & Zhang, Xuncai, 2015. "Adaptive generalized hybrid function projective dislocated synchronization of new four-dimensional uncertain chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 304-314.
    2. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    3. Wang, Cong & Zhang, Hong-li & Fan, Wen-hui, 2017. "Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 14-21.
    4. Wang, Cong & Zhang, Hong-li & Fan, Wen-hui & Ma, Ping, 2020. "Finite-time function projective synchronization control method for chaotic wind power systems," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Runzi, Luo & Zhengmin, Wei, 2009. "Adaptive function projective synchronization of unified chaotic systems with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1266-1272.
    6. Du, Hongyue, 2011. "Function projective synchronization in drive–response dynamical networks with non-identical nodes," Chaos, Solitons & Fractals, Elsevier, vol. 44(7), pages 510-514.
    7. Mahmoud, Emad E. & AL-Harthi, Bushra H., 2020. "A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Wu, Xiang-Jun & Lu, Hong-Tao, 2011. "Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 802-810.
    9. Shen, Liqun & Liu, Wanyu & Ma, Jianwei, 2009. "Robust function projective synchronization of a class of uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1292-1296.
    10. Du, Hongyue & Zeng, Qingshuang & Wang, Changhong, 2009. "Modified function projective synchronization of chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2399-2404.
    11. Gao, Yuan & Liang, Chenghua & Wu, Qiqi & Yuan, Haiying, 2015. "A new fractional-order hyperchaotic system and its modified projective synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 190-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2781-:d:670739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.