IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v252y2015icp201-214.html
   My bibliography  Save this article

An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system

Author

Listed:
  • Wu, Xiangjun
  • Zhu, Changjiang
  • Kan, Haibin

Abstract

In this paper, an improved secure communication scheme is proposed based on passive synchronization of hyperchaotic complex nonlinear system. The hyperchaotic complex Lü system is employed to encrypt the emitted signal. Comparing with the existing approaches, the useful information in our work can be unbounded. In the transmitter, the original information signal is modulated into one parameter of hyperchaotic complex Lü system and it is assumed that the parameter of the receiver system is unknown. In the receiver, based on the passivity theory, the controllers and corresponding parameter update rule are designed to make two identical hyperchaotic complex Lü systems asymptotically synchronized, and identify the unknown parameter simultaneously. The information signal can be recovered accurately by the estimated parameter. Corresponding theoretical proofs and numerical simulations demonstrate the feasibility and effectiveness of the proposed method. It is also shown that the presented secure communication scheme is robust against different channel noise.

Suggested Citation

  • Wu, Xiangjun & Zhu, Changjiang & Kan, Haibin, 2015. "An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 201-214.
  • Handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:201-214
    DOI: 10.1016/j.amc.2014.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernd Blasius & Amit Huppert & Lewi Stone, 1999. "Complex dynamics and phase synchronization in spatially extended ecological systems," Nature, Nature, vol. 399(6734), pages 354-359, May.
    2. Chee, Chin Yi & Xu, Daolin, 2005. "Secure digital communication using controlled projective synchronisation of chaos," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 1063-1070.
    3. Gamal M. Mahmoud & Mansour E. Ahmed & Emad E. Mahmoud, 2008. "Analysis Of Hyperchaotic Complex Lorenz Systems," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(10), pages 1477-1494.
    4. Wei, Du Qu & Luo, Xiao Shu, 2007. "Passivity-based adaptive control of chaotic oscillations in power system," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 665-671.
    5. Mahmoud, Emad E., 2013. "Modified projective phase synchronization of chaotic complex nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 89(C), pages 69-85.
    6. Hu, Manfeng & Yang, Yongqing & Xu, Zhenyuan & Guo, Liuxiao, 2008. "Hybrid projective synchronization in a chaotic complex nonlinear system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 449-457.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huynh, Tuan-Tu & Lin, Chih-Min & Pham, Thanh-Thao T. & Cho, Hsing-Yueh & Le, Tien-Loc, 2019. "A modified function-link fuzzy cerebellar model articulation controller using a PI-type learning algorithm for nonlinear system synchronization and control," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 65-82.
    2. Israr Ahmad & Azizan Bin Saaban & Adyda Binti Ibrahim & Mohammad Shahzad, 2015. "Robust Finite-Time Anti-Synchronization of Chaotic Systems with Different Dimensions," Mathematics, MDPI, vol. 3(4), pages 1-19, December.
    3. Li, Xian-Feng & Chu, Yan-Dong & Leung, Andrew Y.T. & Zhang, Hui, 2017. "Synchronization of uncertain chaotic systems via complete-adaptive-impulsive controls," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 24-30.
    4. Fuchen Zhang & Min Xiao, 2019. "Complex Dynamical Behaviors of Lorenz-Stenflo Equations," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
    5. Xuan-Toa Tran & Hee-Jun Kang, 2017. "Fixed-Time Complex Modified Function Projective Lag Synchronization of Chaotic (Hyperchaotic) Complex Systems," Complexity, Hindawi, vol. 2017, pages 1-9, July.
    6. Lee, S.H. & Park, M.J. & Kwon, O.M. & Sakthivel, R., 2016. "Master-slave synchronization for nonlinear systems via reliable control with gaussian stochastic process," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 439-459.
    7. Zhang, Chuan & Wang, Xingyuan & Luo, Chao & Li, Junqiu & Wang, Chunpeng, 2018. "Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 251-264.
    8. Koronovskii, Alexey A. & Moskalenko, Olga I. & Ponomarenko, Vladimir I. & Prokhorov, Mikhail D. & Hramov, Alexander E., 2016. "Binary generalized synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 133-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud, Emad E. & Abo-Dahab, S.M., 2018. "Dynamical properties and complex anti synchronization with applications to secure communications for a novel chaotic complex nonlinear model," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 273-284.
    2. Ge, Zheng-Ming & Chang, Ching-Ming & Chen, Yen-Sheng, 2006. "Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1298-1315.
    3. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    4. Chen, Hsien-Keng, 2005. "Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and Lü," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1049-1056.
    5. Hoang, Thang Manh, 2011. "Complex synchronization manifold in coupled time-delayed systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 48-57.
    6. Cuimei Jiang & Shutang Liu, 2017. "Synchronization and Antisynchronization of -Coupled Complex Permanent Magnet Synchronous Motor Systems with Ring Connection," Complexity, Hindawi, vol. 2017, pages 1-15, January.
    7. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    8. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Xuan-Bing Yang & Yi-Gang He & Chun-Lai Li, 2018. "Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    10. Mahmoud, Gamal M. & Aly, Shaban A. & Farghaly, Ahmed A., 2007. "On chaos synchronization of a complex two coupled dynamos system," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 178-187.
    11. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    12. Li Xiong & Zhenlai Liu & Xinguo Zhang, 2017. "Dynamical Analysis, Synchronization, Circuit Design, and Secure Communication of a Novel Hyperchaotic System," Complexity, Hindawi, vol. 2017, pages 1-23, November.
    13. Bahn, Volker & Krohn, William B. & O’Connor, Raymond J., 2008. "Dispersal leads to spatial autocorrelation in species distributions: A simulation model," Ecological Modelling, Elsevier, vol. 213(3), pages 285-292.
    14. Lei, Youming & Xu, Wei & Shen, Jianwei, 2007. "Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 371-379.
    15. Karnatak, Rajat & Ramaswamy, Ram & Feudel, Ulrike, 2014. "Conjugate coupling in ecosystems: Cross-predation stabilizes food webs," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 48-57.
    16. Goldwyn, Eli E. & Hastings, Alan, 2008. "When can dispersal synchronize populations?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 395-402.
    17. Banerjee, Santo, 2009. "Synchronization of time-delayed systems with chaotic modulation and cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 745-750.
    18. Sharma, Vivek & Sharma, B.B. & Nath, R., 2017. "Nonlinear unknown input sliding mode observer based chaotic system synchronization and message recovery scheme with uncertainty," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 51-58.
    19. Peng, Qiu & Jian, Jigui, 2021. "Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Mahmoud, Gamal M. & Mahmoud, Emad E. & Arafa, Ayman A., 2018. "Synchronization of time delay systems with non-diagonal complex scaling functions," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 86-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:252:y:2015:i:c:p:201-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.