IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p476-d339347.html
   My bibliography  Save this article

On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations

Author

Listed:
  • Jiraporn Reunsumrit

    (Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
    These authors contributed equally to this work.)

  • Thanin Sitthiwirattham

    (Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand
    These authors contributed equally to this work.)

Abstract

In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder’s fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example.

Suggested Citation

  • Jiraporn Reunsumrit & Thanin Sitthiwirattham, 2020. "On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations," Mathematics, MDPI, vol. 8(4), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:476-:d:339347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    2. Thabet Abdeljawad, 2013. "On Delta and Nabla Caputo Fractional Differences and Dual Identities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, July.
    3. Thabet Abdeljawad & Ferhan M. Atici, 2012. "On the Definitions of Nabla Fractional Operators," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suwan, Iyad & Abdeljawad, Thabet & Jarad, Fahd, 2018. "Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu differences," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 50-59.
    2. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    3. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    4. Pshtiwan Othman Mohammed & Thabet Abdeljawad & Faraidun Kadir Hamasalh, 2021. "On Riemann—Liouville and Caputo Fractional Forward Difference Monotonicity Analysis," Mathematics, MDPI, vol. 9(11), pages 1-17, June.
    5. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    7. Rashid, Saima & Sultana, Sobia & Jarad, Fahd & Jafari, Hossein & Hamed, Y.S., 2021. "More efficient estimates via ℏ-discrete fractional calculus theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Ran, Jie & Zhou, Yonghui & Pu, Hao, 2024. "Global stability and synchronization of stochastic discrete-time variable-order fractional-order delayed quaternion-valued neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 413-437.
    9. Rashid, Saima & Sultana, Sobia & Hammouch, Zakia & Jarad, Fahd & Hamed, Y.S., 2021. "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    11. Rujira Ouncharoen & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2020. "Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    12. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    13. Chen, Wei-Wei & Li, Hong-Li, 2024. "Complete synchronization of delayed discrete-time fractional-order competitive neural networks," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    14. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    15. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    16. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    17. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    18. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    19. Pshtiwan Othman Mohammed & Hari Mohan Srivastava & Dumitru Baleanu & Rashid Jan & Khadijah M. Abualnaja, 2022. "Monotonicity Results for Nabla Riemann–Liouville Fractional Differences," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    20. Lei, Dong & Liang, Yingjie & Xiao, Rui, 2018. "A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 465-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:476-:d:339347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.