IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923011700.html
   My bibliography  Save this article

Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method

Author

Listed:
  • Zhang, Tianxian
  • Zhao, Yongqi
  • Xu, Xiangliang
  • Wu, Si
  • Gu, Yujuan

Abstract

In recent years, newly proposed fractal-fractional calculus operators have been used to predict the chaotic behavior of some attractors, and the new operators can capture self-similarity in the studied chaotic attractors. The results of varying with fractal order and fractional order are interesting, however, the dynamics are barely analyzed in these studies, and the law of fractal order and fractional order on the system is not clear. In this paper, the fractal-fractional differential operators with inverse operator property are redefined in the Caputo sense, and a new numerical scheme is proposed based on the sixth-order Adomain decomposition method. Then the dynamics of the new multi-scroll Chen chaotic system and its three degradation modes are analyzed completely in the fractal-fractional sense. The influence of the change of fractal order and fractional order on the chaotic system is revealed. Finally, a new physical phenomenon of the fractal-fractional chaotic system is captured by observing the coexistence of multi-scroll and two-scroll chaotic attractors of the new system through a wood-grain-like attractor basin, as well as transient chaos, chaotic jumps, and complex state transition behaviors. It is shown that fractal-fractional multi-scroll Chen system has complex and specific dynamical behaviors.

Suggested Citation

  • Zhang, Tianxian & Zhao, Yongqi & Xu, Xiangliang & Wu, Si & Gu, Yujuan, 2024. "Solution and dynamics analysis of fractal-fractional multi-scroll Chen chaotic system based on Adomain decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923011700
    DOI: 10.1016/j.chaos.2023.114268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Cui & Hongjun He & Guan Sun & Chenhui Lu, 2019. "Analysis and Control of Fractional Order Generalized Lorenz Chaotic System by Using Finite Time Synchronization," Advances in Mathematical Physics, Hindawi, vol. 2019, pages 1-12, July.
    2. Lei Zhang & Shabir Ahmad & Aman Ullah & Ali Akgãœl & Esra Karatas Akgãœl, 2022. "Analysis Of Hidden Attractors Of Non-Equilibrium Fractal-Fractional Chaotic System With One Signum Function," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-16, August.
    3. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    4. Xiang-Liang Xu & Guo-Dong Li & Wan-Ying Dai & Xiao-Ming Song, 2021. "Multi-Direction Chain And Grid Chaotic System Based On Julia Fractal," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(08), pages 1-20, December.
    5. Atangana, Abdon & Bouallegue, Ghaith & Bouallegue, Kais, 2020. "New multi-scroll attractors obtained via Julia set mapping," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    7. Zou, Chengye & Wang, Xingyuan & Zhou, Changjun & Xu, Shujuan & Huang, Chun, 2022. "A novel image encryption algorithm based on DNA strand exchange and diffusion," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    8. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Mishra, Jyoti, 2019. "Modified Chua chaotic attractor with differential operators with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 64-72.
    10. Atangana, Abdon & Shafiq, Anum, 2019. "Differential and integral operators with constant fractional order and variable fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 226-243.
    11. Mohamed Elbadri & Mohamed A. Abdoon & Mohammed Berir & Dalal Khalid Almutairi, 2023. "A Numerical Solution and Comparative Study of the Symmetric Rossler Attractor with the Generalized Caputo Fractional Derivative via Two Different Methods," Mathematics, MDPI, vol. 11(13), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Xuan, Liu & Ahmad, Shabir & Ullah, Aman & Saifullah, Sayed & Akgül, Ali & Qu, Haidong, 2022. "Bifurcations, stability analysis and complex dynamics of Caputo fractal-fractional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Akgül, Ali & Siddique, Imran, 2021. "Analysis of MHD Couette flow by fractal-fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    5. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Siddique, Imran & Akgül, Ali, 2020. "Analysis of MHD generalized first problem of Stokes’ in view of local and non-local fractal fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Rashid, Saima & Jarad, Fahd & Alsharidi, Abdulaziz Khalid, 2022. "Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal–fractional operator technique," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Rubayyi T. Alqahtani & Shabir Ahmad & Ali Akgül, 2022. "On Numerical Analysis of Bio-Ethanol Production Model with the Effect of Recycling and Death Rates under Fractal Fractional Operators with Three Different Kernels," Mathematics, MDPI, vol. 10(7), pages 1-23, March.
    13. Ahmad, Zubair & Ali, Farhad & Khan, Naveed & Khan, Ilyas, 2021. "Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Babu, N. Ramesh & Balasubramaniam, P., 2023. "Master–slave synchronization for glucose–insulin metabolism of type-1 diabetic Mellitus model based on new fractal–fractional order derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 282-301.
    15. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    17. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.
    19. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    20. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923011700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.