IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v106y2003i1p1-40.html
   My bibliography  Save this article

Error analysis of the optimal quantization algorithm for obstacle problems

Author

Listed:
  • Bally, Vlad
  • Pagès, Gilles

Abstract

In the paper Bally and Pagès (2000) an algorithm based on an optimal discrete quantization tree is designed to compute the solution of multi-dimensional obstacle problems for homogeneous -valued Markov chains (Xk)0[less-than-or-equals, slant]k[less-than-or-equals, slant]n. This tree is made up with the (optimal) quantization grids of every Xk. Then a dynamic programming formula is naturally designed on it. The pricing of multi-asset American style vanilla options is a typical example of such problems. The first part of this paper is devoted to the analysis of the Lp-error induced by the quantization procedure. A second part deals with the analysis of the statistical error induced by the Monte Carlo estimation of the transition weights of the quantization tree.

Suggested Citation

  • Bally, Vlad & Pagès, Gilles, 2003. "Error analysis of the optimal quantization algorithm for obstacle problems," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 1-40, July.
  • Handle: RePEc:eee:spapps:v:106:y:2003:i:1:p:1-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00026-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. BALLY Vlad & PAGÈS Gilles & PRINTEMS Jacques, 2001. "A stochastic quantization method for nonlinear problems," Monte Carlo Methods and Applications, De Gruyter, vol. 7(1-2), pages 21-34, December.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    5. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    6. Pagès Gilles & Printems Jacques, 2003. "Optimal quadratic quantization for numerics: the Gaussian case," Monte Carlo Methods and Applications, De Gruyter, vol. 9(2), pages 135-165, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouchard, Bruno & Chassagneux, Jean-François, 2008. "Discrete-time approximation for continuously and discretely reflected BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2269-2293, December.
    2. Gobet, Emmanuel & Makhlouf, Azmi, 2010. "-time regularity of BSDEs with irregular terminal functions," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1105-1132, July.
    3. Bruno Bouchard & Jean-François Chassagneux & Géraldine Bouveret, 2016. "A backward dual representation for the quantile hedging of Bermudan options," Post-Print hal-01069270, HAL.
    4. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    5. Marie Bernhart & Huyên Pham & Peter Tankov & Xavier Warin, 2011. "Swing Options Valuation:a BSDE with Constrained Jumps Approach," Working Papers hal-00553356, HAL.
    6. Jean-Franc{c}ois Chassagneux & Mohan Yang, 2021. "Numerical approximation of singular Forward-Backward SDEs," Papers 2106.15496, arXiv.org.
    7. Crisan, D. & Manolarakis, K. & Touzi, N., 2010. "On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1133-1158, July.
    8. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    9. Olivier Aj Bardou & Sandrine Bouthemy & Gilles Pag`es, 2007. "Optimal quantization for the pricing of swing options," Papers 0705.2110, arXiv.org.
    10. Céline Labart & Jérôme Lelong, 2011. "A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options," Working Papers hal-00567729, HAL.
    11. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    12. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha & Chao Zhou, 2021. "A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs," Papers 2102.12051, arXiv.org.
    13. Said Hamadène & Monique Jeanblanc, 2007. "On the Starting and Stopping Problem: Application in Reversible Investments," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 182-192, February.
    14. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    15. J. Bonnans & Zhihao Cen & Thibault Christel, 2012. "Energy contracts management by stochastic programming techniques," Annals of Operations Research, Springer, vol. 200(1), pages 199-222, November.
    16. Gassiat, Paul & Kharroubi, Idris & Pham, Huyên, 2012. "Time discretization and quantization methods for optimal multiple switching problem," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2019-2052.
    17. Labart Céline & Lelong Jérôme, 2013. "A parallel algorithm for solving BSDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 19(1), pages 11-39, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    2. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    3. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    4. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    5. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    6. Nordahl, Helge A., 2008. "Valuation of life insurance surrender and exchange options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 909-919, June.
    7. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    8. Mario Cerrato, 2008. "Valuing American Derivatives by Least Squares Methods," Working Papers 2008_12, Business School - Economics, University of Glasgow, revised Sep 2008.
    9. Doan, Viet_Dung & Gaikwad, Abhijeet & Bossy, Mireille & Baude, Françoise & Stokes-Rees, Ian, 2010. "Parallel pricing algorithms for multi-dimensional Bermudan/American options using Monte Carlo methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 568-577.
    10. Garcia, Diego, 2003. "Convergence and Biases of Monte Carlo estimates of American option prices using a parametric exercise rule," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1855-1879, August.
    11. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    12. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    13. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    14. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    15. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    16. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    17. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    18. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    19. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    20. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:106:y:2003:i:1:p:1-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.