IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp216-231.html
   My bibliography  Save this article

An uncertain bi-objective mean-entropy model for portfolio selection with realistic factors

Author

Listed:
  • Lv, Linjing
  • Zhang, Bo
  • Li, Hui

Abstract

In the imprecise investment environment, there are many indeterminate factors impacting security returns. This paper introduces a portfolio optimization problem where cross-entropy is utilized to control portfolio risk within the framework of uncertainty theory and presents an uncertain bi-objective mean-entropy portfolio selection model. To be more realistic, some realistic factors such as minimum transaction lots, dividend factors and tax factors are also considered. By introducing a risk preference coefficient, the bi-objective model is converted into a single-objective model and some equivalents are discussed. Additionally, a hybrid intelligent algorithm integrating a genetic algorithm with uncertain estimation is designed to solve the proposed model. Finally, a case study is executed to confirm the practicability of the model and the performance of the algorithm, and an empirical analysis based on the proposed model and the uncertain mean–variance model is developed to illustrate the advantage of the uncertain mean-entropy model in practical investment.

Suggested Citation

  • Lv, Linjing & Zhang, Bo & Li, Hui, 2024. "An uncertain bi-objective mean-entropy model for portfolio selection with realistic factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 216-231.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:216-231
    DOI: 10.1016/j.matcom.2024.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ying & Li, Xiaozhong & Liu, Yinli, 2015. "The bounds of premium and optimality of stop loss insurance under uncertain random environments," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 273-278.
    2. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    3. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    4. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    5. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    6. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    7. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    8. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
    9. Gilboa,Itzhak, 2009. "Theory of Decision under Uncertainty," Cambridge Books, Cambridge University Press, number 9780521517324, January.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Xiaoxia Huang & Guowei Jiang, 2021. "Portfolio management with background risk under uncertain mean-variance utility," Fuzzy Optimization and Decision Making, Springer, vol. 20(3), pages 315-330, September.
    12. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    13. Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
    14. Li, Xiang & Qin, Zhongfeng, 2014. "Interval portfolio selection models within the framework of uncertainty theory," Economic Modelling, Elsevier, vol. 41(C), pages 338-344.
    15. Enrique Ballestero, 2005. "Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 1-15.
    16. Tingqing Ye & Baoding Liu, 2023. "Uncertain significance test for regression coefficients with application to regional economic analysis," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(20), pages 7271-7288, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Chen & Jin Peng & Bo Zhang & Isnaini Rosyida, 2017. "Diversified models for portfolio selection based on uncertain semivariance," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 637-648, February.
    2. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    3. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    4. Oleg Malafeyev & Achal Awasthi, 2017. "Dynamic optimization of a portfolio," Papers 1712.00585, arXiv.org.
    5. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    6. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    7. Li, Bo & Lu, Ziqiang, 2023. "Uncertain random enhanced index tracking for portfolio selection with parameter estimation and hypothesis test," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    9. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    10. Borgonovo, Emanuele & Gatti, Stefano, 2013. "Risk analysis with contractual default. Does covenant breach matter?," European Journal of Operational Research, Elsevier, vol. 230(2), pages 431-443.
    11. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    12. Výrost, Tomas & Lyócsa, Štefan & Baumöhl, Eduard, 2019. "Network-based asset allocation strategies," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 516-536.
    13. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    14. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    15. Ballestero, E. & Gunther, M. & Pla-Santamaria, D. & Stummer, C., 2007. "Portfolio selection under strict uncertainty: A multi-criteria methodology and its application to the Frankfurt and Vienna Stock Exchanges," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1476-1487, September.
    16. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    17. Anthony Hatherley & Jamie Alcock, 2007. "Portfolio construction incorporating asymmetric dependence structures: a user's guide," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 47(3), pages 447-472, September.
    18. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    19. repec:cte:wsrepe:38369 is not listed on IDEAS
    20. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    21. Tongyao Wang & Qitong Pan & Weiping Wu & Jianjun Gao & Ke Zhou, 2024. "Dynamic Mean–Variance Portfolio Optimization with Value-at-Risk Constraint in Continuous Time," Mathematics, MDPI, vol. 12(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:216-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.