IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i3p637-648.html
   My bibliography  Save this article

Diversified models for portfolio selection based on uncertain semivariance

Author

Listed:
  • Lin Chen
  • Jin Peng
  • Bo Zhang
  • Isnaini Rosyida

Abstract

Since the financial markets are complex, sometimes the future security returns are represented mainly based on experts’ estimations due to lack of historical data. This paper proposes a semivariance method for diversified portfolio selection, in which the security returns are given subjective to experts’ estimations and depicted as uncertain variables. In the paper, three properties of the semivariance of uncertain variables are verified. Based on the concept of semivariance of uncertain variables, two types of mean-semivariance diversified models for uncertain portfolio selection are proposed. Since the models are complex, a hybrid intelligent algorithm which is based on 99-method and genetic algorithm is designed to solve the models. In this hybrid intelligent algorithm, 99-method is applied to compute the expected value and semivariance of uncertain variables, and genetic algorithm is employed to seek the best allocation plan for portfolio selection. At last, several numerical examples are presented to illustrate the modelling idea and the effectiveness of the algorithm.

Suggested Citation

  • Lin Chen & Jin Peng & Bo Zhang & Isnaini Rosyida, 2017. "Diversified models for portfolio selection based on uncertain semivariance," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 637-648, February.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:3:p:637-648
    DOI: 10.1080/00207721.2016.1206985
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2016.1206985
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2016.1206985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crama, Y. & Schyns, M., 2003. "Simulated annealing for complex portfolio selection problems," European Journal of Operational Research, Elsevier, vol. 150(3), pages 546-571, November.
    2. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    3. Yao, Kai & Qin, Zhongfeng, 2015. "A modified insurance risk process with uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 227-233.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Ayub, Usman & Shah, Syed Zulfiqar Ali & Abbas, Qaisar, 2015. "Robust analysis for downside risk in portfolio management for a volatile stock market," Economic Modelling, Elsevier, vol. 44(C), pages 86-96.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Li, Xiang & Qin, Zhongfeng, 2014. "Interval portfolio selection models within the framework of uncertainty theory," Economic Modelling, Elsevier, vol. 41(C), pages 338-344.
    8. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    9. Huang, Xiaoxia & Zhao, Tianyi, 2014. "Mean-chance model for portfolio selection based on uncertain measure," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 243-250.
    10. Qin, Zhongfeng, 2015. "Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns," European Journal of Operational Research, Elsevier, vol. 245(2), pages 480-488.
    11. Liu, Ying & Li, Xiaozhong & Liu, Yinli, 2015. "The bounds of premium and optimality of stop loss insurance under uncertain random environments," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 273-278.
    12. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    13. Li, Shengguo & Peng, Jin & Zhang, Bo, 2013. "The uncertain premium principle based on the distortion function," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 317-324.
    14. Qiulin Guo & Jianzhong Li & Caineng Zou & Yujuan Guo & Wei Yan, 2012. "A class of multi-period semi-variance portfolio for petroleum exploration and development," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1883-1890.
    15. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    16. Wei Yan, 2012. "Continuous-time safety-first portfolio selection with jump-diffusion processes," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(4), pages 622-628.
    17. Li, Xiang & Qin, Zhongfeng & Kar, Samarjit, 2010. "Mean-variance-skewness model for portfolio selection with fuzzy returns," European Journal of Operational Research, Elsevier, vol. 202(1), pages 239-247, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    2. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    3. Oleg Malafeyev & Achal Awasthi, 2017. "Dynamic optimization of a portfolio," Papers 1712.00585, arXiv.org.
    4. Xiaoxia Huang & Xuting Wang, 2019. "Portfolio Investment with Options Based on Uncertainty Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 929-952, May.
    5. Shen, Jiayu, 2020. "An uncertain sustainable supply chain network," Applied Mathematics and Computation, Elsevier, vol. 378(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
    2. Xiaoxia Huang & Xuting Wang, 2019. "Portfolio Investment with Options Based on Uncertainty Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 929-952, May.
    3. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    4. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    5. Jin, Xiu & Chen, Na & Yuan, Ying, 2019. "Multi-period and tri-objective uncertain portfolio selection model: A behavioral approach," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 492-504.
    6. Lv, Linjing & Zhang, Bo & Li, Hui, 2024. "An uncertain bi-objective mean-entropy model for portfolio selection with realistic factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 216-231.
    7. Huang, Xiaoxia, 2008. "Portfolio selection with a new definition of risk," European Journal of Operational Research, Elsevier, vol. 186(1), pages 351-357, April.
    8. Zhang, Cheng & Gong, Xiaomin & Zhang, Jingshu & Chen, Zhiwei, 2023. "Dynamic portfolio allocation for financial markets: A perspective of competitive-cum-compensatory strategy," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    9. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    10. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    11. Akhilesh KUMAR & Mohammad SHAHID, 2021. "Portfolio selection problem: Issues, challenges and future prospectus," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(629), W), pages 71-90, Winter.
    12. Li, Bo & Li, Xiangfa & Teo, Kok Lay & Zheng, Peiyao, 2022. "A new uncertain random portfolio optimization model for complex systems with downside risks and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Liu, Weilong & Zhang, Yong & Liu, Kailong & Quinn, Barry & Yang, Xingyu & Peng, Qiao, 2023. "Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns," QBS Working Paper Series 2023/02, Queen's University Belfast, Queen's Business School.
    14. Huang, Xiaoxia & Di, Hao, 2016. "Uncertain portfolio selection with background risk," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 284-296.
    15. Cui, Tianxiang & Ding, Shusheng & Jin, Huan & Zhang, Yongmin, 2023. "Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach," Economic Modelling, Elsevier, vol. 119(C).
    16. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    17. Smimou, K., 2014. "International portfolio choice and political instability risk: A multi-objective approach," European Journal of Operational Research, Elsevier, vol. 234(2), pages 546-560.
    18. Li, Bo & Huang, Yayi, 2023. "Uncertain random portfolio selection with different mental accounts based on mixed data," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    20. Chen, Wei, 2015. "Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 125-139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:3:p:637-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.