IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v219y2024icp435-453.html
   My bibliography  Save this article

Synchronization of multi-link and multi-delayed inertial neural networks with Markov jump via aperiodically intermittent adaptive control

Author

Listed:
  • Guo, Beibei
  • Xiao, Yu

Abstract

In this paper, we investigate the exponential synchronization problem for multi-link and multi-delayed inertial neural networks with Markov jump (MMDINNMJ) using an aperiodically intermittent adaptive control strategy. Different from most research on inertial neural networks, we take multi-link, multi-delay and Markov jump into account. The obstacle caused by the coexistence of Markov jump and multi-delay is avoided by using the delayed integral method while considering the exponential synchronization of MMDINNMJ. Additionally, under graph theory, Lyapunov stability theory and the developed control scheme, some novel sufficient conditions for synchronization at exponential rate in pth (p>0) moment of underlying networks are determined, which are strongly related to multi-link topological structure, time delay, and Markov jump. Finally, two examples are given to demonstrate the viability of the theoretical conclusions.

Suggested Citation

  • Guo, Beibei & Xiao, Yu, 2024. "Synchronization of multi-link and multi-delayed inertial neural networks with Markov jump via aperiodically intermittent adaptive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 435-453.
  • Handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:435-453
    DOI: 10.1016/j.matcom.2023.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423005463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    2. Lü, Ling & Li, Chengren & Li, Gang & Bai, Suyuan & Gao, Yan & Yan, Zhe & Rong, Tingting, 2018. "Adaptive synchronization of uncertain time-delayed and multi-link network with arbitrary topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 355-365.
    3. Guo, Beibei & Wu, Yinhu & Xiao, Yu & Zhang, Chiping, 2018. "Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 341-357.
    4. Feng, Yuming & Yang, Xinsong & Song, Qiang & Cao, Jinde, 2018. "Synchronization of memristive neural networks with mixed delays via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 874-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    2. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    3. Ruofeng Rao & Jialin Huang & Xinsong Yang, 2021. "Global Stabilization of a Single-Species Ecosystem with Markovian Jumping under Neumann Boundary Value via Laplacian Semigroup," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    4. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    6. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    7. Li, Fengbing & Ma, Zhongjun & Duan, Qichang, 2019. "Partial component synchronization on chaotic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 707-714.
    8. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    9. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    10. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    11. Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    12. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    13. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    14. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    15. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    16. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    17. Guo, Beibei & Xiao, Yu, 2023. "Intermittent synchronization for multi-link and multi-delayed large-scale systems with semi-Markov jump and its application of Chua’s circuits," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Zheng, Ying & Wu, Yayong & Jiang, Guo-Ping, 2024. "Exploring synchronizability of complex dynamical networks from edges perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    19. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    20. Lü, Ling & Wei, Qingtao & Jia, Hao & Tian, Shuo & Xu, Zhao & Zhao, Lina & Xu, Zhichao & Xu, Xianying, 2019. "Parameter identification and synchronization between uncertain delay networks based on the coupling technology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:219:y:2024:i:c:p:435-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.