IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v207y2023icp417-436.html
   My bibliography  Save this article

A numerical approximation for generalized fractional Sturm–Liouville problem with application

Author

Listed:
  • Goel, Eti
  • Pandey, Rajesh K.
  • Yadav, S.
  • Agrawal, Om P.

Abstract

In this paper, we present a numerical scheme for the generalized fractional Sturm–Liouville problem (GFSLP) with mixed boundary conditions. The GFSLP is defined in terms of the B-operator consisting of an integral operator with a kernel and a differential operator. One of the main features of the B-operator is that for different kernels, it leads to different Sturm–Liouville Problems (SLPs), and thus the same formulation can be used to discuss different SLPs. We prove the well-posedness of the proposed GFSLP. Further, the approximated eigenvalues of the GFSLP are obtained for two different kernels namely a modified power kernel and the Prabhakar kernel in the B-operator. We obtain real eigenvalues and corresponding orthogonal eigenfunctions. Theoretical and numerical convergence orders of eigenvalues and eigenvectors are also discussed. Further, the numerically obtained eigenvalues and eigenfunctions are used to construct an approximate solution of the one-dimensional fractional diffusion equation defined in a bounded domain.

Suggested Citation

  • Goel, Eti & Pandey, Rajesh K. & Yadav, S. & Agrawal, Om P., 2023. "A numerical approximation for generalized fractional Sturm–Liouville problem with application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 417-436.
  • Handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:417-436
    DOI: 10.1016/j.matcom.2023.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423000034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
    2. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    3. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    4. Tatiana Odzijewicz & Agnieszka B. Malinowska & Delfim F. M. Torres, 2012. "Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghazadeh, A. & Mahmoudi, Y. & Saei, F.D., 2023. "Legendre approximation method for computing eigenvalues of fourth order fractional Sturm–Liouville problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 286-301.
    2. Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
    3. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    4. Garra, Roberto & Taverna, Giorgio S. & Torres, Delfim F.M., 2017. "Fractional Herglotz variational principles with generalized Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 94-98.
    5. Khan, Sharon & Reynolds, Andy M., 2005. "Derivation of a Fokker–Planck equation for generalized Langevin dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 183-188.
    6. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    7. Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
    8. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    9. Wang, Shaowei & Zhao, Moli & Li, Xicheng, 2011. "Radial anomalous diffusion in an annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3397-3403.
    10. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    11. Xian, Jun & Yan, Xiong-bin & Wei, Ting, 2020. "Simultaneous identification of three parameters in a time-fractional diffusion-wave equation by a part of boundary Cauchy data," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    12. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.
    13. Mophou, G. & Tao, S. & Joseph, C., 2015. "Initial value/boundary value problem for composite fractional relaxation equation," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 134-144.
    14. Guo, Gang & Li, Kun & Wang, Yuhui, 2015. "Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 193-201.
    15. Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
    16. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    17. Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    18. Alam, Mehboob & Shah, Dildar, 2021. "Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Guo, Gang & Chen, Bin & Zhao, Xinjun & Zhao, Fang & Wang, Quanmin, 2015. "First passage time distribution of a modified fractional diffusion equation in the semi-infinite interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 279-290.
    20. Al-Mdallal, Qasem M., 2018. "On fractional-Legendre spectral Galerkin method for fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 261-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:207:y:2023:i:c:p:417-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.