IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v360y2006i2p215-226.html
   My bibliography  Save this article

Fractional diffusion equation and Green function approach: Exact solutions

Author

Listed:
  • Lenzi, E.K.
  • Mendes, R.S.
  • Gonçalves, G.
  • Lenzi, M.K.
  • da Silva, L.R.

Abstract

We investigate the solutions of a fractional diffusion equation with radial symmetry by using the Green function approach and by taking the N-dimensional case into account. In our analysis, a spatial time-dependent diffusion coefficient is considered, i.e., D(r,t)=Dtδ-1r-θ/Γ(α). The presence of external forces F(r)=Krε with ε=-1-θ and F(r)=-kr+Krε is also taken into account. In particular, we discuss the results obtained by employing boundary conditions defined on a finite interval, and afterwards the analysis is extended to a semi-infinite interval. Finally, we also discuss a rich class of diffusive processes that can be obtained from the results presented in this work.

Suggested Citation

  • Lenzi, E.K. & Mendes, R.S. & Gonçalves, G. & Lenzi, M.K. & da Silva, L.R., 2006. "Fractional diffusion equation and Green function approach: Exact solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 215-226.
  • Handle: RePEc:eee:phsmap:v:360:y:2006:i:2:p:215-226
    DOI: 10.1016/j.physa.2005.06.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105007089
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.06.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Metzler, Ralf & Glöckle, Walter G. & Nonnenmacher, Theo F., 1994. "Fractional model equation for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 211(1), pages 13-24.
    2. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    3. Narahari Achar, B.N. & W. Hanneken, John & Clarke, T., 2004. "Damping characteristics of a fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 311-319.
    4. Marcello Pagnini, 2003. "Misura e determinanti dell’agglomerazione spaziale nei comparti industriali in Italia," Rivista di Politica Economica, SIPI Spa, vol. 93(2), pages 149-149, March-Apr.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Gang & Li, Kun & Wang, Yuhui, 2015. "Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 193-201.
    2. Lashkarian, Elham & Reza Hejazi, S., 2017. "Group analysis of the time fractional generalized diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 572-579.
    3. Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lafourcade, Miren & Mion, Giordano, 2007. "Concentration, agglomeration and the size of plants," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 46-68, January.
    2. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    3. Khan, Sharon & Reynolds, Andy M., 2005. "Derivation of a Fokker–Planck equation for generalized Langevin dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 183-188.
    4. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
    5. Di Giacinto, Valter & Pagnini, Marcello, 2011. "Local and global agglomeration patterns: Two econometrics-based indicators," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 266-280, May.
    6. Fernando Alcántara-López & Carlos Fuentes & Rodolfo G. Camacho-Velázquez & Fernando Brambila-Paz & Carlos Chávez, 2022. "Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs," Energies, MDPI, vol. 15(13), pages 1-11, July.
    7. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    8. Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
    9. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    10. Wang, Shaowei & Zhao, Moli & Li, Xicheng, 2011. "Radial anomalous diffusion in an annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3397-3403.
    11. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    12. Xian, Jun & Yan, Xiong-bin & Wei, Ting, 2020. "Simultaneous identification of three parameters in a time-fractional diffusion-wave equation by a part of boundary Cauchy data," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    13. Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
    14. Mophou, G. & Tao, S. & Joseph, C., 2015. "Initial value/boundary value problem for composite fractional relaxation equation," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 134-144.
    15. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    16. Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
    17. Valter Di Giacinto & Marcello Pagnini, 2008. "Agglomeration within and between regions: Two econometric based indicators," Temi di discussione (Economic working papers) 674, Bank of Italy, Economic Research and International Relations Area.
    18. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    19. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    20. Claudia A. Pérez-Pinacho & Cristina Verde, 2022. "A Note on an Integral Transformation for the Equivalence between a Fractional and Integer Order Diffusion Model," Mathematics, MDPI, vol. 10(5), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:360:y:2006:i:2:p:215-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.