Fractional diffusion equation and Green function approach: Exact solutions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2005.06.073
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Metzler, Ralf & Glöckle, Walter G. & Nonnenmacher, Theo F., 1994. "Fractional model equation for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 211(1), pages 13-24.
- Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
- Narahari Achar, B.N. & W. Hanneken, John & Clarke, T., 2004. "Damping characteristics of a fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 311-319.
- Marcello Pagnini, 2003. "Misura e determinanti dell’agglomerazione spaziale nei comparti industriali in Italia," Rivista di Politica Economica, SIPI Spa, vol. 93(2), pages 149-149, March-Apr.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guo, Gang & Li, Kun & Wang, Yuhui, 2015. "Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 193-201.
- Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
- Lashkarian, Elham & Reza Hejazi, S., 2017. "Group analysis of the time fractional generalized diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 572-579.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
- Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
- Di Giacinto, Valter & Pagnini, Marcello, 2011. "Local and global agglomeration patterns: Two econometrics-based indicators," Regional Science and Urban Economics, Elsevier, vol. 41(3), pages 266-280, May.
- Fernando Alcántara-López & Carlos Fuentes & Rodolfo G. Camacho-Velázquez & Fernando Brambila-Paz & Carlos Chávez, 2022. "Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs," Energies, MDPI, vol. 15(13), pages 1-11, July.
- Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
- Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
- Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
- Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
- Lafourcade, Miren & Mion, Giordano, 2007.
"Concentration, agglomeration and the size of plants,"
Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 46-68, January.
- Miren Lafourcade & Giordano Mion, 2005. "Concentration, agglomeration and the size of plants," Working Papers halshs-00590572, HAL.
- Miren Lafourcade & Giordano Mion, 2007. "Concentration, Agglomeration and the Size of Plants," Post-Print halshs-00754253, HAL.
- Miren Lafourcade & Giordano Mion, 2007. "Concentration, Agglomeration and the Size of Plants," PSE-Ecole d'économie de Paris (Postprint) halshs-00754253, HAL.
- LAFOURCADE, Miren & MION, Giordano, 2007. "Concentration, agglomeration and the size of plants," LIDAM Reprints CORE 1963, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Lafourcade, Miren & Mion, Giordano, 2007. "Concentration, agglomeration and the size of plants," LSE Research Online Documents on Economics 42666, London School of Economics and Political Science, LSE Library.
- Miren Lafourcade & Giordano Mion, 2007. "Concentration, agglomeration and the size of plants," Post-Print hal-04246925, HAL.
- Miren Lafourcade & Giordano Mion, 2007. "Concentration, agglomeration and the size of plants," PSE-Ecole d'économie de Paris (Postprint) hal-04246925, HAL.
- Miren Lafourcade & Giordano Mion, 2005. "Concentration, agglomeration and the size of plants," PSE Working Papers halshs-00590572, HAL.
- Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
- Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
- Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
- Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
- Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
- Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
- Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Alam, Mehboob & Shah, Dildar, 2021. "Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Guo, Gang & Chen, Bin & Zhao, Xinjun & Zhao, Fang & Wang, Quanmin, 2015. "First passage time distribution of a modified fractional diffusion equation in the semi-infinite interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 279-290.
- Duan, Jun-Sheng & Wang, Zhong & Liu, Yu-Lu & Qiu, Xiang, 2013. "Eigenvalue problems for fractional ordinary differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 46(C), pages 46-53.
- Khudair, Ayad R. & Haddad, S.A.M. & khalaf, Sanaa L., 2017. "Restricted fractional differential transform for solving irrational order fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 81-85.
More about this item
Keywords
Anomalous diffusion; Fractional diffusion equation; Green function; Exact solutions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:360:y:2006:i:2:p:215-226. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.