IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004768.html
   My bibliography  Save this article

Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives

Author

Listed:
  • Alam, Mehboob
  • Shah, Dildar

Abstract

In this article, we investigate the existence, uniqueness, and stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives. We analyze the existence and uniqueness of the projected model with the help of Banach contraction principle, Schauder’s fixed point theorem, and Krasnoselskii’s fixed point theorem. Moreover, we present different types of stability using the classical technique of functional analysis. To illustrate our theoretical results, at the end we give an example.

Suggested Citation

  • Alam, Mehboob & Shah, Dildar, 2021. "Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004768
    DOI: 10.1016/j.chaos.2021.111122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danfeng Luo & Mehboob Alam & Akbar Zada & Usman Riaz & Zhiguo Luo & Peter Giesl, 2021. "Existence and Stability of Implicit Fractional Differential Equations with Stieltjes Boundary Conditions Involving Hadamard Derivatives," Complexity, Hindawi, vol. 2021, pages 1-36, March.
    2. Arshad Ali & Vidushi Gupta & Thabet Abdeljawad & Kamal Shah & Fahd Jarad, 2020. "Mathematical Analysis of Nonlocal Implicit Impulsive Problem under Caputo Fractional Boundary Conditions," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, November.
    3. Shah, Syed Omar & Zada, Akbar, 2019. "Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 202-213.
    4. Metzler, Ralf & Klafter, Joseph, 2000. "Boundary value problems for fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(1), pages 107-125.
    5. Usman Riaz & Akbar Zada & Zeeshan Ali & Manzoor Ahmad & Jiafa Xu & Zhengqing Fu, 2019. "Analysis of Nonlinear Coupled Systems of Impulsive Fractional Differential Equations with Hadamard Derivatives," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-20, June.
    6. Zada, Akbar & Ali, Wajid & Park, Choonkil, 2019. "Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 60-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binlin Zhang & Rafia Majeed & Mehboob Alam, 2022. "On Fractional Langevin Equations with Stieltjes Integral Conditions," Mathematics, MDPI, vol. 10(20), pages 1-16, October.
    2. Rafia Majeed & Binlin Zhang & Mehboob Alam, 2023. "Fractional Langevin Coupled System with Stieltjes Integral Conditions," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    3. Akbar Zada & Shaheen Fatima & Zeeshan Ali & Jiafa Xu & Yujun Cui, 2019. "Stability Results for a Coupled System of Impulsive Fractional Differential Equations," Mathematics, MDPI, vol. 7(10), pages 1-29, October.
    4. Usman Riaz & Akbar Zada & Zeeshan Ali & Ioan-Lucian Popa & Shahram Rezapour & Sina Etemad, 2021. "On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    5. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    6. Jiafa Xu & Jiqiang Jiang & Donal O’Regan, 2020. "Positive Solutions for a Class of p -Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems," Mathematics, MDPI, vol. 8(3), pages 1-13, February.
    7. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
    9. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    10. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    11. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Marseguerra, M. & Zoia, A., 2008. "Monte Carlo evaluation of FADE approach to anomalous kinetics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 345-357.
    13. Kashfi Sadabad, Mahnaz & Jodayree Akbarfam, Aliasghar, 2021. "An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm–Liouville problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 547-569.
    14. Wei, Q. & Yang, S. & Zhou, H.W. & Zhang, S.Q. & Li, X.N. & Hou, W., 2021. "Fractional diffusion models for radionuclide anomalous transport in geological repository systems," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Shah, Syed Omar & Zada, Akbar, 2019. "Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 202-213.
    16. Guo, Gang & Chen, Bin & Zhao, Xinjun & Zhao, Fang & Wang, Quanmin, 2015. "First passage time distribution of a modified fractional diffusion equation in the semi-infinite interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 279-290.
    17. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Shuyi Wang & Fanwei Meng, 2021. "Ulam Stability of n -th Order Delay Integro-Differential Equations," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
    19. Khudair, Ayad R. & Haddad, S.A.M. & khalaf, Sanaa L., 2017. "Restricted fractional differential transform for solving irrational order fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 81-85.
    20. Yu, Xiangnan & Zhang, Yong & Sun, HongGuang & Zheng, Chunmiao, 2018. "Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 306-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.