IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/871912.html
   My bibliography  Save this article

Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics

Author

Listed:
  • Tatiana Odzijewicz
  • Agnieszka B. Malinowska
  • Delfim F. M. Torres

Abstract

We study fractional variational problems in terms of a generalized fractional integral with Lagrangians depending on classical derivatives, generalized fractional integrals and derivatives. We obtain necessary optimality conditions for the basic and isoperimetric problems, as well as natural boundary conditions for free-boundary value problems. The fractional action-like variational approach (FALVA) is extended and some applications to physics discussed.

Suggested Citation

  • Tatiana Odzijewicz & Agnieszka B. Malinowska & Delfim F. M. Torres, 2012. "Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-24, May.
  • Handle: RePEc:hin:jnlaaa:871912
    DOI: 10.1155/2012/871912
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2012/871912.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2012/871912.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/871912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garra, Roberto & Taverna, Giorgio S. & Torres, Delfim F.M., 2017. "Fractional Herglotz variational principles with generalized Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 94-98.
    2. Baba, Bashir Abdullahi & Bilgehan, Bulent, 2021. "Optimal control of a fractional order model for the COVID – 19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Goel, Eti & Pandey, Rajesh K. & Yadav, S. & Agrawal, Om P., 2023. "A numerical approximation for generalized fractional Sturm–Liouville problem with application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 417-436.
    4. Muhammad Imran Asjad & Saif Ur Rehman & Ali Ahmadian & Soheil Salahshour & Mehdi Salimi, 2021. "First Solution of Fractional Bioconvection with Power Law Kernel for a Vertical Surface," Mathematics, MDPI, vol. 9(12), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:871912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.