IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v205y2023icp794-817.html
   My bibliography  Save this article

A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm

Author

Listed:
  • Deng, Huaijun
  • Liu, Linna
  • Fang, Jianyin
  • Qu, Boyang
  • Huang, Quanzhen

Abstract

Whale optimization algorithm (WOA), as an advanced optimization algorithm with simple structure, has been favored by various fields. However, there are some disadvantages of WOA, such as slow convergence speed, low precision and falling into local optimal value easily. In this paper, a novel improved whale optimization algorithm (IWOA) with multi-strategy and hybrid algorithm is proposed to overcome above shortcomings. Firstly, IWOA initializes the population by chaotic mapping to avoid the initial population distribution of WOA deviating from the optimal value. Secondly, IWOA combines the pheromone of the black widow algorithm and the opposition-based learning strategy to modify the population, which improves the convergence speed and the global performance of WOA respectively. Finally, the adaptive coefficients and the new update modes replace the original update modes, which makes the structure of WOA simpler and more accurate. In addition, the convergence of IWOA is also proved in this paper. On the one hand, to demonstrate the effectiveness of IWOA, 23 benchmark functions are used to test various performance of the algorithm. On the other hand, in order to prove the superiority of IWOA, the experimental results are compared and analyzed with other optimization algorithms. Simulation results show that IWOA proposed in this paper owns excellent performance in convergence speed, stability, accuracy and global performance, compared with other algorithms.

Suggested Citation

  • Deng, Huaijun & Liu, Linna & Fang, Jianyin & Qu, Boyang & Huang, Quanzhen, 2023. "A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 794-817.
  • Handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:794-817
    DOI: 10.1016/j.matcom.2022.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tawhid, M.A. & Ibrahim, A.M., 2021. "Solving nonlinear systems and unconstrained optimization problems by hybridizing whale optimization algorithm and flower pollination algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1342-1369.
    2. Wumei Sun & Hongwei Liu & Zexian Liu, 2021. "A Class of Accelerated Subspace Minimization Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 811-840, September.
    3. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    4. Chinnaraj Govindasamy & Arokiasamy Antonidoss, 2022. "Enhanced Inventory Management Using Blockchain Technology Under Cloud Sector Enabled by Hybrid Multi-Verse with Whale Optimization Algorithm," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 577-614, March.
    5. Sorin-Mihai Grad & Felipe Lara, 2021. "Solving Mixed Variational Inequalities Beyond Convexity," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 565-580, August.
    6. Mahnaz Toloueiashtian & Mehdi Golsorkhtabaramiri & Seyed Yaser Bozorgi Rad, 2022. "An improved whale optimization algorithm solving the point coverage problem in wireless sensor networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(3), pages 417-436, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Aosheng & Chen, Yong & Suo, Jinyi & Zhang, Jie, 2024. "Improving teaching-learning-based optimization algorithm with golden-sine and multi-population for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 94-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jinzhong & Zhang, Gang & Kong, Min & Zhang, Tan & Wang, Duansong & Chen, Rui, 2023. "CWOA: A novel complex-valued encoding whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 151-188.
    2. Chinedu Izuchukwu & Yekini Shehu & Chibueze C. Okeke, 2023. "Extension of forward-reflected-backward method to non-convex mixed variational inequalities," Journal of Global Optimization, Springer, vol. 86(1), pages 123-140, May.
    3. Tawhid, Mohamed A. & Ibrahim, Abdelmonem M., 2022. "Improved salp swarm algorithm combined with chaos," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 113-148.
    4. Changfu Tong & Hongfei Hou & Hexiang Zheng & Ying Wang & Jin Liu, 2024. "A Coupled Model for Forecasting Spatiotemporal Variability of Regional Drought in the Mu Us Sandy Land Using a Meta-Heuristic Algorithm," Land, MDPI, vol. 13(11), pages 1-22, October.
    5. Jinzhong Zhang & Tan Zhang & Gang Zhang & Min Kong, 2023. "Parameter optimization of PID controller based on an enhanced whale optimization algorithm for AVR system," Operational Research, Springer, vol. 23(3), pages 1-26, September.
    6. Pham Ngoc Anh & Qamrul Hasan Ansari & Ho Phi Tu, 2023. "DC auxiliary principle methods for solving lexicographic equilibrium problems," Journal of Global Optimization, Springer, vol. 85(1), pages 129-153, January.
    7. A. Iusem & F. Lara, 2022. "Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 443-461, June.
    8. Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.
    9. Li, Maodong & Xu, Guanghui & Lai, Qiang & Chen, Jie, 2022. "A chaotic strategy-based quadratic Opposition-Based Learning adaptive variable-speed whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 71-99.
    10. Alfredo Iusem & Felipe Lara & Raúl T. Marcavillaca & Le Hai Yen, 2024. "A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming," Journal of Global Optimization, Springer, vol. 90(3), pages 755-779, November.
    11. Theogan Logan Pillay & Akshay Kumar Saha, 2024. "A Review of Metaheuristic Optimization Techniques for Effective Energy Conservation in Buildings," Energies, MDPI, vol. 17(7), pages 1-36, March.
    12. Hu, Gang & Du, Bo & Li, Huinan & Wang, Xupeng, 2022. "Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 428-467.
    13. S.-M. Grad & F. Lara & R. T. Marcavillaca, 2023. "Relaxed-inertial proximal point type algorithms for quasiconvex minimization," Journal of Global Optimization, Springer, vol. 85(3), pages 615-635, March.
    14. Kang, Helei & Liu, Renyun & Yao, Yifei & Yu, Fanhua, 2023. "Improved Harris hawks optimization for non-convex function optimization and design optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 619-639.
    15. He, Bohao & Jia, Biying & Zhao, Yanghe & Wang, Xu & Wei, Mao & Dietzel, Ranae, 2022. "Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 267(C).
    16. Liu, Jianxun & Shi, Jinfei & Hao, Fei & Dai, Min, 2022. "A reinforced exploration mechanism whale optimization algorithm for continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 23-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:205:y:2023:i:c:p:794-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.