A brief comparative study of gamma alumina–water and gamma alumina–EG nanofluids flow near a solid sphere
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.10.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Daungthongsuk, Weerapun & Wongwises, Somchai, 2007. "A critical review of convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 797-817, June.
- Trisaksri, Visinee & Wongwises, Somchai, 2007. "Critical review of heat transfer characteristics of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 512-523, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- ur Rahman, Mujeeb & Hayat, Tasawar & Khan, Sohail A. & Alsaedi, A., 2022. "Entropy generation in Sutterby nanomaterials flow due to rotating disk with radiation and magnetic effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 151-165.
- Yashodha, S. & Hakeem, A.K. Abdul & Ganga, B. & Renuka, P., 2024. "Heat transfer analysis of water-ethylene glycol (50:50) based nanofluid over a cone with the influences of magnetic field and uniform heat generation/absorption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 24-37.
- Preeti, & Ojjela, Odelu, 2022. "Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 100-122.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
- Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
- Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
- Sharma, Anuj Kumar & Tiwari, Arun Kumar & Dixit, Amit Rai, 2016. "Rheological behaviour of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 779-791.
- Sarkar, Jahar, 2011. "A critical review on convective heat transfer correlations of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3271-3277, August.
- Fasano, Matteo & Bozorg Bigdeli, Masoud & Vaziri Sereshk, Mohammad Rasool & Chiavazzo, Eliodoro & Asinari, Pietro, 2015. "Thermal transmittance of carbon nanotube networks: Guidelines for novel thermal storage systems and polymeric material of thermal interest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1028-1036.
- Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
- Thirumaran Balaji & Dhasan Mohan Lal & Chandrasekaran Selvam, 2023. "A Critical Review on the Thermal Transport Characteristics of Graphene-Based Nanofluids," Energies, MDPI, vol. 16(6), pages 1-46, March.
- Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
- Sureshkumar, R. & Mohideen, S. Tharves & Nethaji, N., 2013. "Heat transfer characteristics of nanofluids in heat pipes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 397-410.
- Ahmad Ayyad Alharbi & Ali Rashash R. Alzahrani, 2024. "A COMSOL-Based Numerical Simulation of Heat Transfer in a Hybrid Nanofluid Flow at the Stagnant Point across a Stretching/Shrinking Sheet: Implementation for Understanding and Improving Solar Systems," Mathematics, MDPI, vol. 12(16), pages 1-38, August.
- Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
- Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
- Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
- Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
- Mandal, Swaroop Kumar & Kumar, Samarjeet & Singh, Purushottam Kumar & Mishra, Santosh Kumar & Singh, D.K., 2020. "Performance investigation of nanocomposite based solar water heater," Energy, Elsevier, vol. 198(C).
- Taghizadeh-Tabari, Zohre & Zeinali Heris, Saeed & Moradi, Maryam & Kahani, Mostafa, 2016. "The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1318-1326.
- Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
- Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
- Mohammed, Kafel A. & Abu Talib, A.R. & Nuraini, A.A. & Ahmed, K.A., 2017. "Review of forced convection nanofluids through corrugated facing step," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 234-241.
More about this item
Keywords
Gamma alumina; Entropy generation; Natural convection; Effective and non-effective Prandtl numbers model; Solid sphere;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:487-500. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.