IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v423y2022ics0096300321009838.html
   My bibliography  Save this article

Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation

Author

Listed:
  • Farooq, Umar
  • Waqas, Hassan
  • Muhammad, Taseer
  • Imran, Muhammad
  • Alshomrani, Ali Saleh

Abstract

In engineering and manufacturing processes, heat transmission is unavoidable. Because of the two-part nanomaterials, the hybrid nanofluid has an efficient heat transfer approach which helps to increase the heat transport capacity of standard nanofluids. The flow, heat transport, and entropy of a high conductivity hybrid nanofluid and a stretching surface with velocity slip effects are investigated numerically in this study. The fluid model depicts understanding the thermodynamic efficiency of nanomaterials. The numerical framework for the hybrid nanofluid model is formed and similarity transformations are used to transform the PDEs into nonlinear ordinary differential equations. These equations are numerically calculated for different parameters in the computational tool MATLAB using the shooting (bvp4c) method. The most significant consequences of this investigation are the impacts of various physical flow parameters on the velocity, entropy and temperature profiles including the permeability parameter, velocity slip parameter, magnetic parameter, heat source-sink parameter, Biot number, volume fraction of nanoparticles, thermal radiation parameter, Brinkman number and temperature ratio parameter. For velocity, temperature, and entropy generation profiles, the magnetic parameter performs inversely. Moreover, the system's entropy generation profile is enriched with the incorporation of nanoparticles percentage by volume fraction of nanoparticles and Brinkman number. The authors confirm that all of their findings are unique and have not been previously published.

Suggested Citation

  • Farooq, Umar & Waqas, Hassan & Muhammad, Taseer & Imran, Muhammad & Alshomrani, Ali Saleh, 2022. "Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation," Applied Mathematics and Computation, Elsevier, vol. 423(C).
  • Handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300321009838
    DOI: 10.1016/j.amc.2021.126900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321009838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazarika, Silpi & Ahmed, Sahin & Chamkha, Ali J., 2021. "Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: A numerical modeling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 819-837.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "Mixed convective entropy optimized flow of rheological nanoliquid subject to Cattaneo-Christov fluxes: An application to solar energy," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ur Rahman, Mujeeb & Hayat, Tasawar & Khan, Sohail A. & Alsaedi, A., 2022. "Entropy generation in Sutterby nanomaterials flow due to rotating disk with radiation and magnetic effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 151-165.
    2. Preeti, & Ojjela, Odelu, 2022. "Numerical investigation of heat transport in Alumina–Silica hybrid nanofluid flow with modeling and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 100-122.
    3. Sumayyah Alabdulhadi & Sakhinah Abu Bakar & Anuar Ishak & Iskandar Waini & Sameh E. Ahmed, 2023. "Effect of Buoyancy Force on an Unsteady Thin Film Flow of Al 2 O 3 /Water Nanofluid over an Inclined Stretching Sheet," Mathematics, MDPI, vol. 11(3), pages 1-16, February.
    4. Patil, P.M. & Benawadi, Sunil & Shanker, Bandari, 2022. "Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 764-781.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300321009838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.