IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp624-641.html
   My bibliography  Save this article

An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations

Author

Listed:
  • Xing, Zhiyong
  • Wen, Liping
  • Wang, Wansheng

Abstract

In this paper, we study the numerical solution of the Riesz space fractional Sine–Gordon equations. We develop an explicit fourth-order energy-preserving difference scheme for the two-dimensional space fractional Sine–Gordon equation (SGE). The conservation, convergence and boundedness properties of the numerical scheme are rigorously proved. Subsequently, the proposed numerical method is applied to approximate the one-dimensional space fractional SGE. Several numerical experiments are provided to verify the theoretical results.

Suggested Citation

  • Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:624-641
    DOI: 10.1016/j.matcom.2020.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Chaolong & Sun, Jianqiang & Li, Haochen & Wang, Yifan, 2017. "A fourth-order AVF method for the numerical integration of sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 144-158.
    2. Xing, Zhiyong & Wen, Liping, 2019. "Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 155-166.
    3. Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
    4. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    5. Macías-Díaz, J.E. & Hendy, A.S. & De Staelen, R.H., 2018. "A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Almushaira, Mustafa, 2023. "Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    2. Wang, Nan & Shi, Dongyang, 2021. "Two efficient spectral methods for the nonlinear fractional wave equation in unbounded domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 696-718.
    3. Jianqiang Sun & Jingxian Zhang & Jiameng Kong, 2023. "High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation," Mathematics, MDPI, vol. 11(5), pages 1-19, February.
    4. Guo, Yantao & Fu, Yayun, 2023. "Two efficient exponential energy-preserving schemes for the fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 169-183.
    5. Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
    6. Almushaira, Mustafa, 2023. "Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    7. Qu, Wei & Li, Zhi, 2021. "Fast direct solver for CN-ADI-FV scheme to two-dimensional Riesz space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    8. Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2021. "A Space-Time Fully Decoupled Wavelet Integral Collocation Method with High-Order Accuracy for a Class of Nonlinear Wave Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    9. Xiaoyong Yang & Zhendong Luo, 2022. "An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    10. Luigi Brugnano & Gianluca Frasca-Caccia & Felice Iavernaro, 2019. "Line Integral Solution of Hamiltonian PDEs," Mathematics, MDPI, vol. 7(3), pages 1-28, March.
    11. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    12. Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
    13. Almushaira, Mustafa, 2023. "An efficient fourth-order accurate conservative scheme for Riesz space fractional Schrödinger equation with wave operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 424-447.
    14. Yan, Jingye & Zhang, Hong & Liu, Ziyuan & Song, Songhe, 2020. "Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    15. Martínez, Romeo & Macías-Díaz, Jorge E. & Sheng, Qin, 2022. "A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: Analysis and computational simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 1-21.
    16. Shaojun Chen & Yayun Fu, 2024. "Linearly Implicit Conservative Schemes with a High Order for Solving a Class of Nonlocal Wave Equations," Mathematics, MDPI, vol. 12(15), pages 1-13, August.
    17. Martin-Vergara, Francisca & Rus, Francisco & Villatoro, Francisco R., 2019. "Padé numerical schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 232-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:624-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.