A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: Analysis and computational simulations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2022.05.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
- X. Wang & F. Liu & X. Chen, 2015. "Novel Second-Order Accurate Implicit Numerical Methods for the Riesz Space Distributed-Order Advection-Dispersion Equations," Advances in Mathematical Physics, Hindawi, vol. 2015, pages 1-14, November.
- Manuel Duarte Ortigueira, 2006. "Riesz potential operators and inverses via fractional centred derivatives," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2006, pages 1-12, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Lin & Liu, Nabing & Sheng, Qin, 2023. "A simulation expressivity of the quenching phenomenon in a two-sided space-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 437(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jorge E. Macías-Díaz & Nuria Reguera & Adán J. Serna-Reyes, 2021. "An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
- Adán J. Serna-Reyes & Jorge E. Macías-Díaz, 2021. "A Mass- and Energy-Conserving Numerical Model for a Fractional Gross–Pitaevskii System in Multiple Dimensions," Mathematics, MDPI, vol. 9(15), pages 1-31, July.
- Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
- Joel Alba-Pérez & Jorge E. Macías-Díaz, 2019. "Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion," Mathematics, MDPI, vol. 7(12), pages 1-31, December.
- Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
- Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
- Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
- M. Luísa Morgado & Magda Rebelo & Luís L. Ferrás, 2021. "Stable and Convergent Finite Difference Schemes on NonuniformTime Meshes for Distributed-Order Diffusion Equations," Mathematics, MDPI, vol. 9(16), pages 1-15, August.
- Guo, Yantao & Fu, Yayun, 2023. "Two efficient exponential energy-preserving schemes for the fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 169-183.
- Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
- Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
- Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
- Fu, Yayun & Song, Yongzhong & Wang, Yushun, 2019. "Maximum-norm error analysis of a conservative scheme for the damped nonlinear fractional Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 206-223.
- Manuel Duarte Ortigueira & José Tenreiro Machado, 2019. "Fractional Derivatives: The Perspective of System Theory," Mathematics, MDPI, vol. 7(2), pages 1-14, February.
- Yan, Jingye & Zhang, Hong & Liu, Ziyuan & Song, Songhe, 2020. "Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation," Applied Mathematics and Computation, Elsevier, vol. 367(C).
- Qiang Yu & Viktor Vegh & Fawang Liu & Ian Turner, 2015. "A Variable Order Fractional Differential-Based Texture Enhancement Algorithm with Application in Medical Imaging," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-35, July.
- Owolabi, Kolade M. & Gómez-Aguilar, J.F., 2018. "Numerical simulations of multilingual competition dynamics with nonlocal derivative," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 175-182.
- Owolabi, Kolade M. & Jain, Sonal, 2023. "Spatial patterns through diffusion-driven instability in modified predator–prey models with chaotic behaviors," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Alqhtani, Manal & Owolabi, Kolade M. & Saad, Khaled M. & Pindza, Edson, 2022. "Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
More about this item
Keywords
Fractional Zakharov systems; Conservation of Higgs’ free energy; Riesz space-fractional equations; Energy-conserving method; Fractional-order central differences; Numerical efficiency analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:1-21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.