IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v210y2023icp424-447.html
   My bibliography  Save this article

An efficient fourth-order accurate conservative scheme for Riesz space fractional Schrödinger equation with wave operator

Author

Listed:
  • Almushaira, Mustafa

Abstract

In this study, we investigate a high-order accurate conservative finite difference scheme by utilizing a fourth-order fractional central finite difference method for the two-dimensional Riesz space-fractional nonlinear Schrödinger wave equation. The conservation laws of the discrete difference scheme are shown. Meanwhile, the exactness, uniqueness, and prior estimate of the numerical solution are rigorously established. Then, it is proved that the proposed scheme is unconditionally convergent in the discrete L2 and Hγ/2 norm, where γ is a fractional order. Furthermore, we demonstrate that when the fractional order γ and the spatial grid number J increase, the block-Toeplitz coefficient matrix generated by the spatial discretization becomes ill-conditioned. As a result, we adopt an effective linearized iteration method for the nonlinear system, allowing it to be solved efficiently by the Krylov subspace solver with an appropriate circulant preconditioner, in which the fast Fourier transform is applied to speed up the computational cost at each iterative step. Finally, numerical experiments are presented to validate the theoretical findings and the efficiency of the fast algorithm.

Suggested Citation

  • Almushaira, Mustafa, 2023. "An efficient fourth-order accurate conservative scheme for Riesz space fractional Schrödinger equation with wave operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 424-447.
  • Handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:424-447
    DOI: 10.1016/j.matcom.2023.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Zhiyong & Wen, Liping, 2019. "Numerical analysis and fast implementation of a fourth-order difference scheme for two-dimensional space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 155-166.
    2. Wang, Dongling & Xiao, Aiguo & Yang, Wei, 2015. "Maximum-norm error analysis of a difference scheme for the space fractional CNLS," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 241-251.
    3. Chen, S. & Liu, F. & Jiang, X. & Turner, I. & Anh, V., 2015. "A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 591-601.
    4. Li, Meng & Zhao, Yong-Liang, 2018. "A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 758-773.
    5. Mustafa Almushaira & Fei Liu, 2020. "Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations," Partial Differential Equations and Applications, Springer, vol. 1(6), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xue & Gu, Xian-Ming & Zhao, Yong-Liang & Li, Hu & Gu, Chuan-Yun, 2024. "Two fast and unconditionally stable finite difference methods for Riesz fractional diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    2. Ran, Yu-Hong & Wang, Jun-Gang & Wang, Dong-Ling, 2015. "On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 482-488.
    3. Hao, Zhaopeng & Fan, Kai & Cao, Wanrong & Sun, Zhizhong, 2016. "A finite difference scheme for semilinear space-fractional diffusion equations with time delay," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 238-254.
    4. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    5. Bzeih, Moussa & Arwadi, Toufic El & Wehbe, Ali & Madureira, Rodrigo L.R. & Rincon, Mauro A., 2023. "A finite element scheme for a 2D-wave equation with dynamical boundary control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 315-339.
    6. Li, Meng & Wei, Yifan & Niu, Binqian & Zhao, Yong-Liang, 2022. "Fast L2-1σ Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    7. Luo, Wei-Hua & Huang, Ting-Zhu & Wu, Guo-Cheng & Gu, Xian-Ming, 2016. "Quadratic spline collocation method for the time fractional subdiffusion equation," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 252-265.
    8. Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
    9. Qu, Wei & Li, Zhi, 2021. "Fast direct solver for CN-ADI-FV scheme to two-dimensional Riesz space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    10. Zhang, Qifeng & Ren, Yunzhu & Lin, Xiaoman & Xu, Yinghong, 2019. "Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction–diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 91-110.
    11. Xiaoyong Yang & Zhendong Luo, 2022. "An Unchanged Basis Function and Preserving Accuracy Crank–Nicolson Finite Element Reduced-Dimension Method for Symmetric Tempered Fractional Diffusion Equation," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
    12. Fu, Yayun & Hu, Dongdong & Wang, Yushun, 2021. "High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrödinger equation based on the SAV approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 238-255.
    13. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    14. Liu, Jun & Fu, Hongfei & Chai, Xiaochao & Sun, Yanan & Guo, Hui, 2019. "Stability and convergence analysis of the quadratic spline collocation method for time-dependent fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 633-648.
    15. Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
    16. Fu, Yayun & Song, Yongzhong & Wang, Yushun, 2019. "Maximum-norm error analysis of a conservative scheme for the damped nonlinear fractional Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 206-223.
    17. Zou, Guang-an & Wang, Bo & Sheu, Tony W.H., 2020. "On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrödinger equation with fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 122-134.
    18. He, Tingxiao & Wang, Yun & Zhang, Yingnan, 2024. "A partial-integrable numerical simulation scheme of the derivative nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 630-639.
    19. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    20. You, Xiangcheng & Xu, Hang & Sun, Qiang, 2022. "Analysis of BBM solitary wave interactions using the conserved quantities," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:424-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.