IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v185y2021icp696-718.html
   My bibliography  Save this article

Two efficient spectral methods for the nonlinear fractional wave equation in unbounded domain

Author

Listed:
  • Wang, Nan
  • Shi, Dongyang

Abstract

This paper is concerned with two fast and efficient numerical methods to solve the multidimensional nonlinear fractional wave equation in unbounded domain. For the spatial discretization, a spectral-Galerkin method is adopted by using the Fourier-Like Mapped Chebyshev function approximation, which makes fractional Laplacian diagonalized. Then, for the temporal discretization, the second order accurate time-splitting method is proposed and it not only avoids the matrix exponential computation in view of the diagonalized structure of semi-discrete systems, but also results in an explicit and time symmetric scheme; Then, an exponential scalar auxiliary variable (E-SAV) method is developed for solving fractional wave equation, which preserves the original energy conservation and makes nonlinear term to be solved explicitly to obtain a linear system at each time step. In addition, the two schemes both can be implemented by the fast Fourier transform (FFT) related to Chebyshev polynomials. Numerical experiments are provided to test the numerical accuracy and the efficiency in long time simulations.

Suggested Citation

  • Wang, Nan & Shi, Dongyang, 2021. "Two efficient spectral methods for the nonlinear fractional wave equation in unbounded domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 696-718.
  • Handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:696-718
    DOI: 10.1016/j.matcom.2021.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421000380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Meng & Fei, Mingfa & Wang, Nan & Huang, Chengming, 2020. "A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 404-419.
    2. Macías-Díaz, J.E. & Hendy, A.S. & De Staelen, R.H., 2018. "A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jin & Su, Xiaoning & Zhao, Kaiyan, 2023. "Barycentric interpolation collocation algorithm to solve fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 340-367.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bzeih, Moussa & Arwadi, Toufic El & Wehbe, Ali & Madureira, Rodrigo L.R. & Rincon, Mauro A., 2023. "A finite element scheme for a 2D-wave equation with dynamical boundary control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 315-339.
    2. Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
    3. Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
    4. Hu, Dongdong & Cai, Wenjun & Xu, Zhuangzhi & Bo, Yonghui & Wang, Yushun, 2021. "Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine–Gordon equation with damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 35-59.
    5. Macías-Díaz, J.E., 2018. "A numerically efficient Hamiltonian method for fractional wave equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 231-248.
    6. Zhao, Jingjun & Li, Yu & Xu, Yang, 2019. "An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 124-138.
    7. Shaojun Chen & Yayun Fu, 2024. "Linearly Implicit Conservative Schemes with a High Order for Solving a Class of Nonlocal Wave Equations," Mathematics, MDPI, vol. 12(15), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:185:y:2021:i:c:p:696-718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.