Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2023.128039
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiang, Chaolong & Sun, Jianqiang & Li, Haochen & Wang, Yifan, 2017. "A fourth-order AVF method for the numerical integration of sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 144-158.
- Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
- Brugnano, L. & Frasca Caccia, G. & Iavernaro, F., 2015. "Energy conservation issues in the numerical solution of the semilinear wave equation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 842-870.
- Sheng, Q. & Khaliq, A.Q. M. & Voss, D.A., 2005. "Numerical simulation of two-dimensional sine-Gordon solitons via a split cosine scheme," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(4), pages 355-373.
- Almushaira, M. & Bhatt, H. & Al-rassas, A.M., 2021. "Fast high-order method for multi-dimensional space-fractional reaction–diffusion equations with general boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 235-258.
- Hu, Dongdong & Cai, Wenjun & Xu, Zhuangzhi & Bo, Yonghui & Wang, Yushun, 2021. "Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine–Gordon equation with damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 35-59.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin-Vergara, Francisca & Rus, Francisco & Villatoro, Francisco R., 2019. "Padé numerical schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 232-243.
- Luigi Brugnano & Gianluca Frasca-Caccia & Felice Iavernaro, 2019. "Line Integral Solution of Hamiltonian PDEs," Mathematics, MDPI, vol. 7(3), pages 1-28, March.
- Jiang, Chaolong & Sun, Jianqiang & Li, Haochen & Wang, Yifan, 2017. "A fourth-order AVF method for the numerical integration of sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 144-158.
- Trofimov, Vyacheslav A. & Stepanenko, Svetlana & Razgulin, Alexander, 2021. "Conservation laws of femtosecond pulse propagation described by generalized nonlinear Schrödinger equation with cubic nonlinearity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 366-396.
- Jianqiang Sun & Jingxian Zhang & Jiameng Kong, 2023. "High Order Energy Preserving Composition Method for Multi-Symplectic Sine-Gordon Equation," Mathematics, MDPI, vol. 11(5), pages 1-19, February.
- Frasca-Caccia, Gianluca & Hydon, Peter E., 2021. "Numerical preservation of multiple local conservation laws," Applied Mathematics and Computation, Elsevier, vol. 403(C).
- Adak, D. & Natarajan, S., 2020. "Virtual element method for semilinear sine–Gordon equation over polygonal mesh using product approximation technique," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 224-243.
- Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
- Sun, Zhengjie, 2022. "A conservative scheme for two-dimensional Schrödinger equation based on multiquadric trigonometric quasi-interpolation approach," Applied Mathematics and Computation, Elsevier, vol. 423(C).
- Hu, Dongdong & Cai, Wenjun & Xu, Zhuangzhi & Bo, Yonghui & Wang, Yushun, 2021. "Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine–Gordon equation with damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 35-59.
- Zhang, Gengen, 2021. "Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Amodio, Pierluigi & Brugnano, Luigi & Iavernaro, Felice, 2019. "A note on the continuous-stage Runge–Kutta(–Nyström) formulation of Hamiltonian Boundary Value Methods (HBVMs)," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
- Liu, Changying & Wu, Xinyuan & Shi, Wei, 2018. "New energy-preserving algorithms for nonlinear Hamiltonian wave equation equipped with Neumann boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 588-606.
- Yang, Yanhong & Wang, Yushun & Song, Yongzhong, 2018. "A new local energy-preserving algorithm for the BBM equation," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 119-130.
- Barletti, L. & Brugnano, L. & Frasca Caccia, G. & Iavernaro, F., 2018. "Energy-conserving methods for the nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 3-18.
- Xie, Jianqiang & Zhang, Zhiyue, 2019. "An analysis of implicit conservative difference solver for fractional Klein–Gordon–Zakharov system," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 153-166.
- Jiong Weng & Xiaojing Liu & Youhe Zhou & Jizeng Wang, 2021. "A Space-Time Fully Decoupled Wavelet Integral Collocation Method with High-Order Accuracy for a Class of Nonlinear Wave Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
- Zhang, Pingrui & Jiang, Xiaoyun & Jia, Junqing, 2024. "Improved uniform error estimates for the two-dimensional nonlinear space fractional Dirac equation with small potentials over long-time dynamics," Applied Mathematics and Computation, Elsevier, vol. 466(C).
- Dehghan, Mehdi & Shokri, Ali, 2008. "A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 700-715.
- Huang, Qiong-Ao & Zhang, Gengen & Wu, Bing, 2022. "Fully-discrete energy-preserving scheme for the space-fractional Klein–Gordon equation via Lagrange multiplier type scalar auxiliary variable approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 265-277.
More about this item
Keywords
Sine-Gordon equation; Energy-preserving; Efficient implementation; Compact finite difference; Scalar auxiliary variable;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:451:y:2023:i:c:s0096300323002084. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.