Two efficient exponential energy-preserving schemes for the fractional Klein–Gordon Schrödinger equation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.02.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
- Wang, Jun-jie & Xiao, Ai-guo, 2018. "An efficient conservative difference scheme for fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 691-709.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yan, Jingye & Zhang, Hong & Liu, Ziyuan & Song, Songhe, 2020. "Two novel linear-implicit momentum-conserving schemes for the fractional Korteweg-de Vries equation," Applied Mathematics and Computation, Elsevier, vol. 367(C).
- Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
- Xing, Zhiyong & Wen, Liping & Wang, Wansheng, 2021. "An explicit fourth-order energy-preserving difference scheme for the Riesz space-fractional Sine–Gordon equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 624-641.
- Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
- Che, Han & Wang, Yu-Lan & Li, Zhi-Yuan, 2022. "Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 149-163.
- Huang, Qiong-Ao & Zhang, Gengen & Wu, Bing, 2022. "Fully-discrete energy-preserving scheme for the space-fractional Klein–Gordon equation via Lagrange multiplier type scalar auxiliary variable approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 265-277.
- Martínez, Romeo & Macías-Díaz, Jorge E. & Sheng, Qin, 2022. "A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: Analysis and computational simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 1-21.
- Li, Meng & Fei, Mingfa & Wang, Nan & Huang, Chengming, 2020. "A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 404-419.
More about this item
Keywords
Fractional Klein–Gordon Schrödinger equation; Exponential time difference; Partitioned averaged vector field method; Conservative schemes; Fourier pseudo-spectral method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:209:y:2023:i:c:p:169-183. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.