IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v455y2021ics0304380021002088.html
   My bibliography  Save this article

Sensitivity analysis using Morris: Just screening or an effective ranking method?

Author

Listed:
  • Paleari, Livia
  • Movedi, Ermes
  • Zoli, Michele
  • Burato, Andrea
  • Cecconi, Irene
  • Errahouly, Jabir
  • Pecollo, Eleonora
  • Sorvillo, Carla
  • Confalonieri, Roberto

Abstract

Sensitivity analysis (SA) is a fundamental practice for analyzing model behavior under different conditions of application. A number of SA techniques were proposed, ranging from simple screening methods to computationally expensive variance-based ones. In this study, we compared the Morris and E-FAST methods by applying them to three widely used generic crop models largely differing for complexity and for the approaches used to formalize knowledge on crop physiology, i.e., STICS, CropSyst and WOFOST. SA experiments were carried out at sub-model level on rice crops grown under different environmental conditions. Results highlighted the lack of linearity between the total-order sensitivity estimates provided by E-FAST and Morris, although the concordance (TDCC) between the parameter rankings obtained with the two methods was always significant at the 0.05 level for parameters involved with crop growth and for those involved with phenological development for STICS, whereas it was significant at the 0.10 level for the phenology parameters of CropSyst and WOFOST. Given Morris required less than 3% of the model executions needed by E-FAST, our results allow considering Morris as a suitable alternative to more demanding SA methods when ranking parameters or discriminating between influential and non-influential model factors are the SA goals, especially in computationally expensive SA studies.

Suggested Citation

  • Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
  • Handle: RePEc:eee:ecomod:v:455:y:2021:i:c:s0304380021002088
    DOI: 10.1016/j.ecolmodel.2021.109648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Confalonieri, R. & Bellocchi, G. & Bregaglio, S. & Donatelli, M. & Acutis, M., 2010. "Comparison of sensitivity analysis techniques: A case study with the rice model WARM," Ecological Modelling, Elsevier, vol. 221(16), pages 1897-1906.
    2. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    3. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    4. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    5. Makowski, David & Naud, Cédric & Jeuffroy, Marie-Hélène & Barbottin, Aude & Monod, Hervé, 2006. "Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1142-1147.
    6. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    7. Xu, Chonggang & Gertner, George, 2011. "Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 184-198, January.
    8. Sobol’, I.M. & Kucherenko, S., 2009. "Derivative based global sensitivity measures and their link with global sensitivity indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3009-3017.
    9. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    10. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadiello, Tommaso & Gabbrielli, Mara & Botta, Marco & Acutis, Marco & Bechini, Luca & Ragaglini, Giorgio & Fiorini, Andrea & Tabaglio, Vincenzo & Perego, Alessia, 2023. "A new module to simulate surface crop residue decomposition: Description and sensitivity analysis," Ecological Modelling, Elsevier, vol. 480(C).
    2. Wang, Zhaoyang & Shi, Yinfang & Hou, Cheng & Zhang, Puhan, 2024. "Sensitivity analysis of simulated Lycium barbarum L. yield in the WOFOST model under different climate conditions," Ecological Modelling, Elsevier, vol. 488(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    4. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    5. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    6. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    7. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    8. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Paleari, Livia & Confalonieri, Roberto, 2016. "Sensitivity analysis of a sensitivity analysis: We are likely overlooking the impact of distributional assumptions," Ecological Modelling, Elsevier, vol. 340(C), pages 57-63.
    10. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    11. Yu, Bo & Liu, Xueqing & Ji, Chao & Sun, Hua, 2023. "Greenhouse gas mitigation strategies and decision support for the utilization of agricultural waste systems: A case study of Jiangxi Province, China," Energy, Elsevier, vol. 265(C).
    12. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    13. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    14. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2017. "Multivariate sensitivity analysis based on the direction of eigen space through principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 1-10.
    15. Nogal, M. & Nogal, A., 2021. "Sensitivity method for extreme-based engineering problems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Pengfei Wei & Zhenzhou Lu & Jingwen Song, 2014. "Moment‐Independent Sensitivity Analysis Using Copula," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 210-222, February.
    17. Jiacheng Liu & Haiyun Liu & Cong Zhang & Jiyin Cao & Aibo Xu & Jiwei Hu, 2024. "Derivative-Variance Hybrid Global Sensitivity Measure with Optimal Sampling Method Selection," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    18. Tissot, Jean-Yves & Prieur, Clémentine, 2012. "Bias correction for the estimation of sensitivity indices based on random balance designs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 205-213.
    19. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    20. Xing Liu & Enrico Zio & Emanuele Borgonovo & Elmar Plischke, 2024. "A Systematic Approach of Global Sensitivity Analysis and Its Application to a Model for the Quantification of Resilience of Interconnected Critical Infrastructures," Energies, MDPI, vol. 17(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:455:y:2021:i:c:s0304380021002088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.