IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v413y2022ics0096300321006883.html
   My bibliography  Save this article

Sampled-data synchronization criteria for Markovian jumping neural networks with additive time-varying delays using new techniques

Author

Listed:
  • Wu, Tao
  • Cao, Jinde
  • Xiong, Lianglin
  • Zhang, Haiyang
  • Shu, Jinlong

Abstract

This paper investigates the sampled-data synchronization issue of Markovian jumping neural networks with additive time-varying delays. Firstly, a ternary quadratic function negative-determination condition and the bilateral sampled-interval-related Lyapunov functional (BSIRLF) approach are proposed. Based on the developed two novel approaches, some new criteria based on the linear matrix inequalities (LMIs) are established to guarantee the drive-response stochastic sampled-data synchronization of Markovian jumping neural networks with additive time-varying delays. Meanwhile, the corresponding sampled-data controller gains are designed under the larger sampling interval. In the end, the availability and merits of the developed approaches are displayed via two simulative examples.

Suggested Citation

  • Wu, Tao & Cao, Jinde & Xiong, Lianglin & Zhang, Haiyang & Shu, Jinlong, 2022. "Sampled-data synchronization criteria for Markovian jumping neural networks with additive time-varying delays using new techniques," Applied Mathematics and Computation, Elsevier, vol. 413(C).
  • Handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321006883
    DOI: 10.1016/j.amc.2021.126604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Jiamu & Dong, Hailing & Feng, Jianwen, 2017. "Event-triggered communication for synchronization of Markovian jump delayed complex networks with partially unknown transition rates," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 617-629.
    2. Zeng, Deqiang & Pu, Zhilin & Zhang, Ruimei & Zhong, Shouming & Liu, Yajuan & Wu, Guo-Cheng, 2019. "Stochastic reliable synchronization for coupled Markovian reaction–diffusion neural networks with actuator failures and generalized switching policies," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 88-106.
    3. Shi, Kaibo & Wang, Jun & Zhong, Shouming & Zhang, Xiaojun & Liu, Yajuan & Cheng, Jun, 2019. "New reliable nonuniform sampling control for uncertain chaotic neural networks under Markov switching topologies," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 169-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saravanan Shanmugam & Rajarathinam Vadivel & Nallappan Gunasekaran, 2023. "Finite-Time Synchronization of Quantized Markovian-Jump Time-Varying Delayed Neural Networks via an Event-Triggered Control Scheme under Actuator Saturation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoqing & Nguang, Sing Kiong & She, Kun & Cheng, Jun & Zhong, Shouming, 2021. "Resilient controller synthesis for Markovian jump systems with probabilistic faults and gain fluctuations under stochastic sampling operational mechanism," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Jian, Long & Hu, Jiangping & Wang, Jun & Shi, Kaibo, 2019. "Observer-based output feedback distributed event-triggered control for linear multi-agent systems under general directed graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Liu, Shouqiang & Yu, Mengjing & Li, Miao & Xu, Qingzhen, 2019. "The research of virtual face based on Deep Convolutional Generative Adversarial Networks using TensorFlow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 667-680.
    4. Wang, Bo & Cheng, Jun & Zhou, Xia, 2020. "A multiple hierarchical structure strategy to quantized control of Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    5. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    6. Zhang, Zhiming & Zheng, Wei & Lam, H.K. & Wen, Shuhuan & Sun, Fuchun & Xie, Ping, 2020. "Stability analysis and output feedback control for stochastic networked systems with multiple communication delays and nonlinearities using fuzzy control technique," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Peng, Zhinan & Hu, Jiangping & Shi, Kaibo & Luo, Rui & Huang, Rui & Ghosh, Bijoy Kumar & Huang, Jiuke, 2020. "A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    8. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    9. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    10. Zhang, Chunmei & Han, Bang-Sheng, 2020. "Stability analysis of stochastic delayed complex networks with multi-weights based on Razumikhin technique and graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Yao, Xiuming & Lian, Yue & Park, Ju H., 2019. "Disturbance-observer-based event-triggered control for semi-Markovian jump nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    12. Li, Qiaoping & Liu, Sanyang & Chen, Yonggang, 2018. "Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 521-535.
    13. Wang, Xuelian & Xia, Jianwei & Wang, Jing & Wang, Jian & Wang, Zhen, 2019. "Passive state estimation for fuzzy jumping neural networks with fading channels based on the hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Zhang, Chunmei & Yang, Yinghui, 2020. "Synchronization of stochastic multi-weighted complex networks with Lévy noise based on graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Wu, Zhenyu & Chen, Jiawei & Zhang, Xuexi & Xiao, Zehui & Tao, Jie & Wang, Xiaofeng, 2022. "Dynamic event-triggered synchronization of complex networks with switching topologies: Asynchronous observer-based case," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    16. Liu, Xinmiao & Xia, Jianwei & Huang, Xia & Shen, Hao, 2020. "Generalized synchronization for coupled Markovian neural networks subject to randomly occurring parameter uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    18. Li, Min & Huang, Qinzhen, 2019. "Non-fragile passive control for Markovian jump systems with time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    19. Pradeep, C. & Cao, Yang & Murugesu, R. & Rakkiyappan, R., 2019. "An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 41-56.
    20. Zhen Zhou & Hongbin Wang & Zhongquan Hu, 2018. "Event-Based Time Varying Formation Control for Multiple Quadrotor UAVs with Markovian Switching Topologies," Complexity, Hindawi, vol. 2018, pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321006883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.