IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i1d10.1007_s10898-019-00743-8.html
   My bibliography  Save this article

Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem

Author

Listed:
  • Rudolf Scitovski

    (University of Osijek)

  • Kristian Sabo

    (University of Osijek)

Abstract

In this paper, we propose an efficient method for searching for a globally optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n . Due to the property of the DIRECT global optimization algorithm to usually quickly arrive close to a point of global minimum, after which it slowly attains the desired accuracy, the proposed method uses the well-known k-means algorithm with a initial approximation chosen on the basis of only a few iterations of the DIRECT algorithm. In case of searching for an optimal k-partition of spherical clusters, the method is not worse than other known methods, but in case of solving the multiple circle detection problem, the proposed method shows remarkable superiority.

Suggested Citation

  • Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00743-8
    DOI: 10.1007/s10898-019-00743-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00743-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00743-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leisch, Friedrich, 2006. "A toolbox for K-centroids cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 526-544, November.
    2. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    3. Ratko Grbić & Emmanuel Nyarko & Rudolf Scitovski, 2013. "A modification of the DIRECT method for Lipschitz global optimization for a symmetric function," Journal of Global Optimization, Springer, vol. 57(4), pages 1193-1212, December.
    4. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    2. Kristian Sabo & Rudolf Scitovski & Šime Ungar & Zoran Tomljanović, 2024. "A method for searching for a globally optimal k-partition of higher-dimensional datasets," Journal of Global Optimization, Springer, vol. 89(3), pages 633-653, July.
    3. Sabo, Kristian & Grahovac, Danijel & Scitovski, Rudolf, 2020. "Incremental method for multiple line detection problem — iterative reweighted approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 588-602.
    4. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    5. Rudolf Scitovski & Snježana Majstorović & Kristian Sabo, 2021. "A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem," Journal of Global Optimization, Springer, vol. 79(3), pages 669-686, March.
    6. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    7. Hajibaba, Homa & Gretzel, Ulrike & Leisch, Friedrich & Dolnicar, Sara, 2015. "Crisis-resistant tourists," Annals of Tourism Research, Elsevier, vol. 53(C), pages 46-60.
    8. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
    9. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    10. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    11. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    12. Konstantin Barkalov & Roman Strongin, 2018. "Solving a set of global optimization problems by the parallel technique with uniform convergence," Journal of Global Optimization, Springer, vol. 71(1), pages 21-36, May.
    13. Sara Dolnicar & Friedrich Leisch, 2017. "Using segment level stability to select target segments in data-driven market segmentation studies," Marketing Letters, Springer, vol. 28(3), pages 423-436, September.
    14. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    15. Chen, Jizhong & Hou, Chaoyong & Wu, Guoliang & Wang, Kunyang & Li, Youning & Jia, Xuecui & Li, Xiangjun & Hui, Dong, 2017. "Duty cycle of an energy storage system in a renewable energy applications: Construction and analysis," Energy, Elsevier, vol. 141(C), pages 2177-2185.
    16. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    17. Fiaschi, Davide & Gianmoena, Lisa & Parenti, Angela, 2018. "Spatial club dynamics in European regions," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 115-130.
    18. Sebastian Krey & Uwe Ligges & Friedrich Leisch, 2014. "Music and timbre segmentation by recursive constrained K-means clustering," Computational Statistics, Springer, vol. 29(1), pages 37-50, February.
    19. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    20. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00743-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.