IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i1d10.1007_s10898-018-0636-z.html
   My bibliography  Save this article

On convergence rate of a rectangular partition based global optimization algorithm

Author

Listed:
  • James Calvin

    (New Jersey Institute of Technology)

  • Gražina Gimbutienė

    (Vilnius University)

  • William O. Phillips

    (New Jersey Institute of Technology)

  • Antanas Žilinskas

    (Vilnius University)

Abstract

The convergence rate of a rectangular partition based algorithm is considered. A hyper-rectangle for the subdivision is selected at each step according to a criterion rooted in the statistical models based theory of global optimization; only the objective function values are used to compute the criterion of selection. The convergence rate is analyzed assuming that the objective functions are twice- continuously differentiable and defined on the unit cube in d-dimensional Euclidean space. An asymptotic bound on the convergence rate is established. The results of numerical experiments are included.

Suggested Citation

  • James Calvin & Gražina Gimbutienė & William O. Phillips & Antanas Žilinskas, 2018. "On convergence rate of a rectangular partition based global optimization algorithm," Journal of Global Optimization, Springer, vol. 71(1), pages 165-191, May.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:1:d:10.1007_s10898-018-0636-z
    DOI: 10.1007/s10898-018-0636-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0636-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0636-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haitao Liu & Shengli Xu & Ying Ma & Xiaofang Wang, 2015. "Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces," Journal of Global Optimization, Springer, vol. 63(2), pages 229-251, October.
    2. J. Calvin & A. Žilinskas, 2000. "One-Dimensional P-Algorithm with Convergence Rate O(n−3+δ) for Smooth Functions," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 297-307, August.
    3. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    4. Antanas Žilinskas & Julius Žilinskas, 2013. "A hybrid global optimization algorithm for non-linear least squares regression," Journal of Global Optimization, Springer, vol. 56(2), pages 265-277, June.
    5. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. J. Price & M. Reale & B. L. Robertson, 2021. "Oscars-ii: an algorithm for bound constrained global optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 39-57, January.
    2. Cuicui Zheng & James Calvin & Craig Gotsman, 2021. "A DIRECT-type global optimization algorithm for image registration," Journal of Global Optimization, Springer, vol. 79(2), pages 431-445, February.
    3. Renato Leone & Yaroslav D. Sergeyev & Anatoly Zhigljavsky, 2018. "Guest editors’ preface to the special issue devoted to the 2nd International Conference “Numerical Computations: Theory and Algorithms”, June 19–25, 2016, Pizzo Calabro, Italy," Journal of Global Optimization, Springer, vol. 71(1), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    2. Antanas Žilinskas & James Calvin, 2019. "Bi-objective decision making in global optimization based on statistical models," Journal of Global Optimization, Springer, vol. 74(4), pages 599-609, August.
    3. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    4. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    5. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    6. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    7. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    8. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    9. Tipaluck Krityakierne & Taimoor Akhtar & Christine A. Shoemaker, 2016. "SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems," Journal of Global Optimization, Springer, vol. 66(3), pages 417-437, November.
    10. Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
    11. Lera, Daniela & Posypkin, Mikhail & Sergeyev, Yaroslav D., 2021. "Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    12. James M. Calvin & Antanas Žilinskas, 2014. "On a Global Optimization Algorithm for Bivariate Smooth Functions," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 528-547, November.
    13. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    14. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    15. Vasiliy V. Grigoriev & Petr N. Vabishchevich, 2021. "Bayesian Estimation of Adsorption and Desorption Parameters for Pore Scale Transport," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    16. Jonathan Gillard & Anatoly Zhigljavsky, 2013. "Optimization challenges in the structured low rank approximation problem," Journal of Global Optimization, Springer, vol. 57(3), pages 733-751, November.
    17. Jin, Zhong & Y. Gao, David, 2017. "On modeling and global solutions for d.c. optimization problems by canonical duality theory," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 168-181.
    18. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    19. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    20. Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:1:d:10.1007_s10898-018-0636-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.