IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v166y2019icp155-176.html
   My bibliography  Save this article

Team Arrangement Heuristic Algorithm (TAHA): Theory and application

Author

Listed:
  • Babayan, Narek
  • Tahani, Mojtaba

Abstract

In this research study a novel human inspired optimization algorithm namely Team Arrangement Heuristic Algorithm (TAHA) is proposed, based on the pyramidal structure of a company and also the activities of each member in the company. It is assumed that in a company three groups of members do activities, which are the CEO, directors and employees. The right arrangement of these members and also connection between them will lead the company to the best situation where, the best project will be handled by the company, with the best members and the project will be precisely finished at its dead line with a high quality. The performance of the proposed algorithm has been evaluated with popular unimodal and multimodal functions. Also CEC2005 benchmark functions are used as a challenging problems. Seven popular optimization algorithms namely, particle swarm optimization (PSO), cuckoo search (CS), fire fly algorithm (FA), flower pollination algorithm (FPA), krill herd (KH), grey wolf optimizer (GWO) and gravitation search algorithm (GSA) are used for the purpose of comparison. Two real case engineering problems, which are heat wheel optimization problem and horizontal axis tidal current turbine problem, are solved using TAHA and other mentioned algorithms. The results indicated that TAHA outperforms other algorithms in several cases and it has a great performance in solving complicated optimization problems.

Suggested Citation

  • Babayan, Narek & Tahani, Mojtaba, 2019. "Team Arrangement Heuristic Algorithm (TAHA): Theory and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 155-176.
  • Handle: RePEc:eee:matcom:v:166:y:2019:i:c:p:155-176
    DOI: 10.1016/j.matcom.2019.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419301569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuhui Shi, 2011. "An Optimization Algorithm Based on Brainstorming Process," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 2(4), pages 35-62, October.
    2. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    3. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    4. Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    2. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    3. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    4. Goundar, Jai N. & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Numerical and experimental studies on hydrofoils for marine current turbines," Renewable Energy, Elsevier, vol. 42(C), pages 173-179.
    5. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    6. Uşar, D. & Bal, Ş., 2015. "Cavitation simulation on horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 80(C), pages 15-25.
    7. Mohammadi, S. & Hassanalian, M. & Arionfard, H. & Bakhtiyarov, S., 2020. "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renewable Energy, Elsevier, vol. 150(C), pages 147-155.
    8. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    9. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2015. "Comparison of BEM-CFD and full rotor geometry simulations for the performance and flow field of a marine current turbine," Renewable Energy, Elsevier, vol. 75(C), pages 640-648.
    10. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    11. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    12. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    13. Abdulaziz Abutunis & Venkata Gireesh Menta, 2022. "Comprehensive Parametric Study of Blockage Effect on the Performance of Horizontal Axis Hydrokinetic Turbines," Energies, MDPI, vol. 15(7), pages 1-22, April.
    14. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    15. Huang, B. & Kanemoto, T., 2015. "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine," Renewable Energy, Elsevier, vol. 81(C), pages 837-844.
    16. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    17. Seo, Jeonghwa & Lee, Seung-Jae & Choi, Woo-Sik & Park, Sung Taek & Rhee, Shin Hyung, 2016. "Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 97(C), pages 784-797.
    18. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    19. Zhang, Liang & Wang, Shu-qi & Sheng, Qi-hu & Jing, Feng-mei & Ma, Yong, 2015. "The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 74(C), pages 796-802.
    20. Faez Hassan, Haydar & El-Shafie, Ahmed & Karim, Othman A., 2012. "Tidal current turbines glance at the past and look into future prospects in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5707-5717.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:166:y:2019:i:c:p:155-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.