IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v90y2020ics0264837719307525.html
   My bibliography  Save this article

Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran

Author

Listed:
  • Shirmohammadi, Bagher
  • Malekian, Arash
  • Salajegheh, Ali
  • Taheri, Bahram
  • Azarnivand, Hossein
  • Malek, Ziga
  • Verburg, Peter H.

Abstract

Arid and semi-arid regions are particularly vulnerable to global environmental change because of their fragile climatic conditions. The rapid development of land use is expected to affect aquatic ecosystems in these regions. In this study, we focused on how land use change affects the stream flow and inflow to Urmia Lake in the Mordagh Chay basin, Iran. This case-study exemplifies dynamics found across a much larger region. We mapped changes in land use between 1993–2015 using satellite imagery and modeled future changes using the Dyna-CLUE model. We projected future land use change until 2030 under four scenarios: continuing of the current trend of water use, 40% water withdrawal reduction, and two other scenarios with 40% water withdrawal reduction and improvements of irrigation efficiency up to 50% and 85%. Between 1993–2015, 21% of the study area changed to orchard and arable land mostly at the cost of rangeland. However, upon reduction of water withdrawal our analyses showed that garden must decrease between 27% and 40%. Rainfed cropland is projected to experience a major increase in all scenarios, especially in the case of reduced water withdrawal, where it will increase by 217%. In order to achieve sustainable water resources management land use plays a major role and leads to different land use futures in this type of semi-arid regions.

Suggested Citation

  • Shirmohammadi, Bagher & Malekian, Arash & Salajegheh, Ali & Taheri, Bahram & Azarnivand, Hossein & Malek, Ziga & Verburg, Peter H., 2020. "Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran," Land Use Policy, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:lauspo:v:90:y:2020:i:c:s0264837719307525
    DOI: 10.1016/j.landusepol.2019.104299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837719307525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2019.104299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boini Narsimlu & Ashvin Gosain & Baghu Chahar, 2013. "Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3647-3662, August.
    2. M. Moriondo & C. Giannakopoulos & M. Bindi, 2011. "Climate change impact assessment: the role of climate extremes in crop yield simulation," Climatic Change, Springer, vol. 104(3), pages 679-701, February.
    3. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    4. Elmira Hassanzadeh & Mahdi Zarghami & Yousef Hassanzadeh, 2012. "Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 129-145, January.
    5. I. Masih & S. Uhlenbrook & S. Maskey & V. Smakhtin, 2011. "Streamflow trends and climate linkages in the Zagros Mountains, Iran," Climatic Change, Springer, vol. 104(2), pages 317-338, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maleki, Tahereh & Koohestani, Hossein & Keshavarz, Marzieh, 2022. "Can climate-smart agriculture mitigate the Urmia Lake tragedy in its eastern basin?," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Abdurrahim Aydın & Remzi Eker, 2022. "Future land use/land cover scenarios considering natural hazards using Dyna-CLUE in Uzungöl Nature Conservation Area (Trabzon-NE Türkiye)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2683-2707, December.
    3. Seyed Reza Es’haghi & Hamid Karimi & Amirreza Rezaei & Pouria Ataei, 2022. "Content Analysis of the Problems and Challenges of Agricultural Water Use: A Case Study of Lake Urmia Basin at Miandoab, Iran," SAGE Open, , vol. 12(2), pages 21582440221, April.
    4. Fernandes, Milton Marques & Fernandes, Márcia Rodrigues de Moura & Garcia, Junior Ruiz & Matricardi, Eraldo Aparecido Trondoli & de Almeida, André Quintão & Pinto, Alexandre Siqueira & Menezes, Rômulo, 2020. "Assessment of land use and land cover changes and valuation of carbon stocks in the Sergipe semiarid region, Brazil: 1992–2030," Land Use Policy, Elsevier, vol. 99(C).
    5. Yao Lu & Min Zhou & Guoliang Ou & Zuo Zhang & Li He & Yuxiang Ma & Chaonan Ma & Jiating Tu & Siqi Li, 2021. "Sustainable Land-Use Allocation Model at a Watershed Level under Uncertainty," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    6. Wesley Douglas Oliveira Silva & Danielle Costa Morais & Marcella Maia Urtiga, 2022. "An integrative negotiation model to deal with conflicts toward water resources management: a case study in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10443-10469, August.
    7. Shengtang Wang & Yingchun Ge, 2022. "Ecological Quality Response to Multi-Scenario Land-Use Changes in the Heihe River Basin," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    8. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    9. Moraes-Santos, Eliana Cristina & Dias, Rubens Alves & Balestieri, Jose Antonio Perrella, 2021. "Groundwater and the water-food-energy nexus: The grants for water resources use and its importance and necessity of integrated management," Land Use Policy, Elsevier, vol. 109(C).
    10. Xue Li & Wen Li & Yu Gao, 2023. "Multi-Scenario Simulation of Green Space Landscape Pattern in Harbin City Based on FLUS Model," IJERPH, MDPI, vol. 20(5), pages 1-26, February.
    11. Ming Kong & Jieni Zhao & Chuanfu Zang & Yiting Li & Jinglin Deng, 2023. "Characteristics and Driving Mechanism of Water Resources Trend Change in Hanjiang River Basin," IJERPH, MDPI, vol. 20(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samaneh Ashraf & Amir AghaKouchak & Ali Nazemi & Ali Mirchi & Mojtaba Sadegh & Hamed R. Moftakhari & Elmira Hassanzadeh & Chi-Yuan Miao & Kaveh Madani & Mohammad Mousavi Baygi & Hassan Anjileli & Davo, 2019. "Compounding effects of human activities and climatic changes on surface water availability in Iran," Climatic Change, Springer, vol. 152(3), pages 379-391, March.
    2. Sanaz Moghim, 2020. "Assessment of Water Storage Changes Using GRACE and GLDAS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 685-697, January.
    3. Hossein Tabari & Meron Teferi Taye & Charles Onyutha & Patrick Willems, 2017. "Decadal Analysis of River Flow Extremes Using Quantile-Based Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3371-3387, September.
    4. Ali Torabi Haghighi & Nasim Fazel & Ali Akbar Hekmatzadeh & Björn Klöve, 2018. "Analysis of Effective Environmental Flow Release Strategies for Lake Urmia Restoration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3595-3609, September.
    5. Layani, Ghasem & Bakhshoodeh, Mohammad & Zibaei, Mansour & Viaggi, Davide, 2021. "Sustainable water resources management under population growth and agricultural development in the Kheirabad river basin, Iran," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 10(4), December.
    6. Alireza Gohari & Ali Mirchi & Kaveh Madani, 2017. "System Dynamics Evaluation of Climate Change Adaptation Strategies for Water Resources Management in Central Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1413-1434, March.
    7. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    10. Kaveh Madani, 2021. "Have International Sanctions Impacted Iran’s Environment?," World, MDPI, vol. 2(2), pages 1-22, April.
    11. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    12. Momeni, Marzieh & Zakeri, Zahra & Esfandiari, Mojtaba & Behzadian, Kourosh & Zahedi, Sina & Razavi, Vahid, 2019. "Comparative analysis of agricultural water pricing between Azarbaijan Provinces in Iran and the state of California in the US: A hydro-economic approach," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    13. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    14. Angshuman M. Saharia & Arup Kumar Sarma, 2018. "Future climate change impact evaluation on hydrologic processes in the Bharalu and Basistha basins using SWAT model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1463-1488, July.
    15. Muhammad Kamangar & Ozgur Kisi & Masoud Minaei, 2023. "Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    16. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    17. Sanjeet Kumar & Ashok Mishra & Umesh Kumar Singh, 2023. "Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    18. Taheri, Mercedeh & Emadzadeh, Maryam & Gholizadeh, Mohsen & Tajrishi, Masoud & Ahmadi, Mehdi & Moradi, Melika, 2019. "Investigating the temporal and spatial variations of water consumption in Urmia Lake River Basin considering the climate and anthropogenic effects on the agriculture in the basin," Agricultural Water Management, Elsevier, vol. 213(C), pages 782-791.
    19. Jalal Mirnezami, S. & Molle, François & Talebi Eskandari, Soroush, 2024. "Chronicle of a disaster foretold: The politics of restoring Lake Urmia (Iran)," World Development, Elsevier, vol. 182(C).
    20. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:90:y:2020:i:c:s0264837719307525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.