IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3764-d1074869.html
   My bibliography  Save this article

Characteristics and Driving Mechanism of Water Resources Trend Change in Hanjiang River Basin

Author

Listed:
  • Ming Kong

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Jieni Zhao

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Chuanfu Zang

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Yiting Li

    (School of Geography, South China Normal University, Guangzhou 510631, China)

  • Jinglin Deng

    (School of Geography, South China Normal University, Guangzhou 510631, China)

Abstract

Studying the historical and future trends of water resources in a basin and explaining the causes of water resource changes is very important, which is key to the management of water resources in a basin. The Hanjiang River Basin is an important water supply source for southwestern Fujian and eastern Guangdong, but it has an uneven spatial and temporal distribution of water resources and an outstanding conflict between supply and demand. In this study, the SWAT model was used to simulate the conditions of the Hanjiang River Basin in the last 50 years, using long time series climate data to study the characteristics and driving mechanism of water resources trend change. The results show that the water resources in the basin have not increased significantly in the last 50 years, but evapotranspiration has increased significantly. The forecast results for water resources in the future are reduced. The water resource changes in the basin have been unevenly distributed in the last 50 years. Climate change has been the main factor in total water resource change in the basin, while the difference in water resource change trends within the basin is caused by land use. The key reason for the decrease in water resources in the Hanjiang River Basin is the significant increase in evapotranspiration due to the significant increase in temperature. If this situation continues, the available water resources in the basin will continue to decline. In fact, many basins around the world are currently likely to have such problems, such as the 2022 summer drought in the Danube River Basin in Europe and the Yangtze River Basin in China, so this article is informative and representative of future water resources management in the basin.

Suggested Citation

  • Ming Kong & Jieni Zhao & Chuanfu Zang & Yiting Li & Jinglin Deng, 2023. "Characteristics and Driving Mechanism of Water Resources Trend Change in Hanjiang River Basin," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3764-:d:1074869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Immerzeel & L. Beek & M. Konz & A. Shrestha & M. Bierkens, 2012. "Hydrological response to climate change in a glacierized catchment in the Himalayas," Climatic Change, Springer, vol. 110(3), pages 721-736, February.
    2. Peng Shi & Xinxin Ma & Yuanbing Hou & Qiongfang Li & Zhicai Zhang & Simin Qu & Chao Chen & Tao Cai & Xiuqin Fang, 2013. "Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1263-1278, March.
    3. Suxiao Li & Hong Yang & Martin Lacayo & Junguo Liu & Guangchun Lei, 2018. "Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in Jing-Jin-Ji, China," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    4. Grizzetti, B. & Lanzanova, D. & Liquete, C. & Reynaud, A. & Cardoso, A.C., 2016. "Assessing water ecosystem services for water resource management," Environmental Science & Policy, Elsevier, vol. 61(C), pages 194-203.
    5. Shirmohammadi, Bagher & Malekian, Arash & Salajegheh, Ali & Taheri, Bahram & Azarnivand, Hossein & Malek, Ziga & Verburg, Peter H., 2020. "Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran," Land Use Policy, Elsevier, vol. 90(C).
    6. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingjing Guo & Ziyu Jiang & Yan Bu & Jinhua Cheng, 2019. "Supporting Sustainable Development of Water Resources: A Social Welfare Maximization Game Model," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    2. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    3. Jonathan Fletcher & Nigel Willby & David M. Oliver & Richard S. Quilliam, 2023. "Field-Scale Floating Treatment Wetlands: Quantifying Ecosystem Service Provision from Monoculture vs. Polyculture Macrophyte Communities," Land, MDPI, vol. 12(7), pages 1-15, July.
    4. Suifeng Zhang & Wang Zhang & Canhua Liu, 2023. "Research on Value Evaluation and Impact Mechanism of Water Ecological Services in Mountainous Cities: A Case Study of Xiangxi Prefecture," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    5. Xiaoyan Wang & Tao Yang & Chong-Yu Xu & Lihua Xiong & Pengfei Shi & Zhenya Li, 2020. "The response of runoff components and glacier mass balance to climate change for a glaciated high-mountainous catchment in the Tianshan Mountains," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1239-1258, November.
    6. Siyu Yue & Huaien Li & Fengmin Song, 2023. "Temporal–Spatial Variations in the Economic Value Produced by Environmental Flows in a Water Shortage Area in Northwest China," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    7. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    8. Tao Wu & Peipei Zha & Mengjie Yu & Guojun Jiang & Jianzhen Zhang & Qinglong You & Xuefeng Xie, 2021. "Landscape Pattern Evolution and Its Response to Human Disturbance in a Newly Metropolitan Area: A Case Study in Jin-Yi Metropolitan Area," Land, MDPI, vol. 10(8), pages 1-18, July.
    9. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.
    10. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    11. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    12. Yani Lian & Jungang Luo & Jingmin Wang & Ganggang Zuo & Na Wei, 2022. "Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 21-37, January.
    13. Muhammad Ali Musarat & Wesam Salah Alaloul & Muhammad Babar Ali Rabbani & Mujahid Ali & Muhammad Altaf & Roman Fediuk & Nikolai Vatin & Sergey Klyuev & Hamna Bukhari & Alishba Sadiq & Waqas Rafiq & Wa, 2021. "Kabul River Flow Prediction Using Automated ARIMA Forecasting: A Machine Learning Approach," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    14. Ioannis Souliotis & Nikolaos Voulvoulis, 2021. "Natural Capital Accounting Informing Water Management Policies in Europe," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    15. Carolus, Johannes Friedrich & Hanley, Nick & Olsen, Søren Bøye & Pedersen, Søren Marcus, 2018. "A Bottom-up Approach to Environmental Cost-Benefit Analysis," Ecological Economics, Elsevier, vol. 152(C), pages 282-295.
    16. Exley, G. & Hernandez, R.R. & Page, T. & Chipps, M. & Gambro, S. & Hersey, M. & Lake, R. & Zoannou, K.-S. & Armstrong, A., 2021. "Scientific and stakeholder evidence-based assessment: Ecosystem response to floating solar photovoltaics and implications for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Pettinotti, Laetitia & de Ayala, Amaia & Ojea, Elena, 2018. "Benefits From Water Related Ecosystem Services in Africa and Climate Change," Ecological Economics, Elsevier, vol. 149(C), pages 294-305.
    18. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    19. Vera Nikolić & Zlatko Nedić & Dubravka Škraba Jurlina & Vesna Djikanović & Tamara Kanjuh & Ana Marić & Predrag Simonović, 2023. "Status and Perspectives of the Ichthyofauna of the Labudovo okno Ramsar Site: An Analysis of 14 Years of Data," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    20. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3764-:d:1074869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.