IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v78y2018icp353-366.html
   My bibliography  Save this article

Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile

Author

Listed:
  • Henríquez-Dole, Lenin
  • Usón, Tomás J.
  • Vicuña, Sebastián
  • Henríquez, Cristián
  • Gironás, Jorge
  • Meza, Francisco

Abstract

The integration of urban, rural, and environmental systems is fundamental for resource management. Strategic land use planning attempts to balance these systems to reach sustainability by incorporating future scenario analyses. However, long-term implications of these strategic land use plans are not easily understood, nor spatially visualized, due to their multidimensional effects. This paper illustrates the integration of political conditionings obtained from a strategic land use plan, into a land change model (LCM) to assess long-term policy impacts using landscape metrics. Guided by participatory instances with a group of public, private, and civil stakeholders called the Scenario Building Team (SBT), the Dyna-CLUE LCM was implemented. Two policy frameworks (a trending business-as-usual and a strategic land use plan) were assessed under high and low urban demands up to year 2050 for the Maipo River basin, where the capital of Chile is located. The participatory approach proved to be a useful tool for scenario development and assessment, as the SBT provided valuable information and result’s feasibility analysis. Under all scenarios, peri-urban municipalities would concentrate most urban growth, and those located in the North-West part of the capital would face the largest urban expansion. However, strategic planning implementation would restrict urban areas within the actual urban limits enhancing small town growth. Agricultural areas remain in the best places for production, but still are the greatest contributors to urban expansion. The strategic plan is less effective in diminishing flood risk zones or protecting ecosystems that support the SBT’s perception about the relevance of stronger environmental legislation in the region.

Suggested Citation

  • Henríquez-Dole, Lenin & Usón, Tomás J. & Vicuña, Sebastián & Henríquez, Cristián & Gironás, Jorge & Meza, Francisco, 2018. "Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile," Land Use Policy, Elsevier, vol. 78(C), pages 353-366.
  • Handle: RePEc:eee:lauspo:v:78:y:2018:i:c:p:353-366
    DOI: 10.1016/j.landusepol.2018.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837717311122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2018.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    2. Veldkamp, A. & Fresco, L.O., 1997. "Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984)," Agricultural Systems, Elsevier, vol. 55(1), pages 19-43, September.
    3. Hannes Jochen König & Johannes Schuler & Utia Suarma & Desmond McNeill & Jacques Imbernon & Frieta Damayanti & Syarifah Aini Dalimunthe & Sandra Uthes & Junun Sartohadi & Katharina Helming & Jake Morr, 2010. "Assessing the Impact of Land Use Policy on Urban-Rural Sustainability Using the FoPIA Approach in Yogyakarta, Indonesia," Sustainability, MDPI, vol. 2(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Isazade & Abdul Baser Qasimi & Gordana Kaplan, 2021. "Investigation Of The Effects Of Salt Dust Caused By Drying Of Urmia Lake On The Sustainability Of Urban Environments," Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 5(2), pages 78-84, December.
    2. Oliveira, Eduardo & Meyfroidt, Patrick, 2021. "Strategic Spatial Planning in Emerging Land-Use Frontiers – Evidence from Mozambique," AfricArxiv t3anz, Center for Open Science.
    3. Berhanu Keno Terfa & Nengcheng Chen & Dandan Liu & Xiang Zhang & Dev Niyogi, 2019. "Urban Expansion in Ethiopia from 1987 to 2017: Characteristics, Spatial Patterns, and Driving Forces," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    4. Xindong He & Xianmin Mai & Guoqiang Shen, 2019. "Delineation of Urban Growth Boundaries with SD and CLUE-s Models under Multi-Scenarios in Chengdu Metropolitan Area," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    5. Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
    6. Thi Thu Vu & Yuan Shen & Hung-Yu Lai, 2022. "Strategies to Mitigate the Deteriorating Habitat Quality in Dong Trieu District, Vietnam," Land, MDPI, vol. 11(2), pages 1-17, February.
    7. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    8. Gomes, L.C. & Bianchi, F.J.J.A. & Cardoso, I.M. & Schulte, R.P.O. & Arts, B.J.M. & Fernandes Filho, E.I., 2020. "Land use and land cover scenarios: An interdisciplinary approach integrating local conditions and the global shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 97(C).
    9. Keqiang Wang & Guoxiang Li & Hongmei Liu, 2020. "Location choice of industrial land reduction in Metropolitan Area: Evidence from Shanghai in China," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1837-1859, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    2. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    3. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    4. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    5. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    6. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    7. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    8. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    9. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    10. Prashanti Sharma & Rajesh Bahadur Thapa & Mir Abdul Matin, 2020. "Examining forest cover change and deforestation drivers in Taunggyi District, Shan State, Myanmar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5521-5538, August.
    11. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    12. Javier Muro & Leo Zurita-Arthos & José Jara & Esteban Calderón & Richard Resl & Andreas Rienow & Valerie Graw, 2020. "Earth Observation for Settlement Mapping of Amazonian Indigenous Populations to Support SDG7," Resources, MDPI, vol. 9(8), pages 1-17, August.
    13. van Vliet, Jasper & Hagen-Zanker, Alex & Hurkens, Jelle & van Delden, Hedwig, 2013. "A fuzzy set approach to assess the predictive accuracy of land use simulations," Ecological Modelling, Elsevier, vol. 261, pages 32-42.
    14. Ding, Dan & Liu, Xiaoping & Xu, Xiaocong, 2024. "Projecting the future fine-resolution carbon dioxide emissions under the shared socioeconomic pathways for carbon peak evaluation," Applied Energy, Elsevier, vol. 365(C).
    15. Ramita Manandhar & Inakwu O.A. Odeh & Tihomir Ancev, 2014. "Assessment of Spatial-Temporal Expansion of Built-up and Residential-Commercial Dwellings with Some Economic Implications: A Case Study in the Lower Hunter of Eastern Australia," Land, MDPI, vol. 3(1), pages 1-21, March.
    16. Gustavo Larrea‐Gallegos & Ian Vázquez‐Rowe, 2022. "Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 225-239, February.
    17. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    18. van Vliet, Jasper & Bregt, Arnold K. & Hagen-Zanker, Alex, 2011. "Revisiting Kappa to account for change in the accuracy assessment of land-use change models," Ecological Modelling, Elsevier, vol. 222(8), pages 1367-1375.
    19. Olivia, Susan & Boe-Gibson, Geua & Stitchbury, Glen & Brabyn, Lars & Gibson, John, 2018. "Urban land expansion in Indonesia 1992-2012: evidence from satellite-detected luminosity," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), July.
    20. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:78:y:2018:i:c:p:353-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.