IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i9d10.1007_s10668-021-01231-4.html
   My bibliography  Save this article

Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region

Author

Listed:
  • Hashem Dadashpoor

    (Tarbiat Modares University)

  • Hossein Panahi

    (Tarbiat Modares University)

Abstract

Spatial simulation of land-use change scenarios in metropolitan areas is essential for analyzing both the causes and consequences of various future scenarios and is also valuable for land-use planning and management. However, current simulation models primarily focus on spatial and rarely on quantitative driving factors. This article aims to simulate future scenarios of land-use changes in the Tehran metropolitan region (TMR) by combining different models to fill this gap. Thus, in the first step, land-use changes were analyzed in the period 1985, 2000, and 2015. Then, by identifying the impact of driving factors and land-use transition potentials with Logistic regression (LR), land-use changes were allocated using the Cellular Automata (CA) method. Finally, with the validation of the model, four scenarios of the current trend(CT), socioeconomic growth(SEG), ecological-oriented(EO), and integrated development(ID) were suggested with the combination of the System Dynamic (SD) model. The results show that the trend of land-use changes in TMR has led to the destruction of grassland, agricultural, and uncultivated lands and the continuation of this trend will increase the damage of built-up areas on valuable natural and ecological resources. In this way, proximity to roads, distance from built-up areas, and natural factors had the greatest impact on changes. Based on future scenarios in 2030, the change in the SEG-scenario shows a rapid increase in built-up areas (2858km2) and encroachment on agricultural lands (2171km2). In the EO-scenario, destruction of grassland and agricultural lands and the growth of built-up areas will be limited, while CT-scenario leads to the high growth of built-up areas along with destructive impacts on natural and open spaces. In the ID-scenario, the built-up areas and grasslands will increase to 2808km2 and 7438km2, respectively. Accordingly, policy-makers can use simulation of different scenarios to mitigate probable consequences of land-use changes in the metropolitan regions.

Suggested Citation

  • Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:9:d:10.1007_s10668-021-01231-4
    DOI: 10.1007/s10668-021-01231-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01231-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01231-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henríquez-Dole, Lenin & Usón, Tomás J. & Vicuña, Sebastián & Henríquez, Cristián & Gironás, Jorge & Meza, Francisco, 2018. "Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile," Land Use Policy, Elsevier, vol. 78(C), pages 353-366.
    2. Mehdi Sheikh Goodarzi & Yousef Sakieh & Shabnam Navardi, 2017. "Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1103-1126, June.
    3. Mehdi Alidadi & Hashem Dadashpoor, 2018. "Beyond monocentricity: examining the spatial distribution of employment in Tehran metropolitan region, Iran," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(1), pages 38-58, January.
    4. Hashem Dadashpoor & Mahboobeh Nateghi, 2017. "Simulating spatial pattern of urban growth using GIS-based SLEUTH model: a case study of eastern corridor of Tehran metropolitan region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 527-547, April.
    5. Huiran Han & Chengfeng Yang & Jinping Song, 2015. "Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    6. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin & Zhang, Chunxiao & Li, Jiayang & Lv, Yongqiang, 2018. "Interoperable scenario simulation of land-use policy for Beijing–Tianjin–Hebei region, China," Land Use Policy, Elsevier, vol. 75(C), pages 155-165.
    7. Hashem Dadashpoor & Fardis Salarian, 2020. "Urban sprawl on natural lands: analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 593-614, February.
    8. Dadashpoor, Hashem & Ahani, Somayeh, 2021. "Explaining objective forces, driving forces, and causal mechanisms affecting the formation and expansion of the peri-urban areas: A critical realism approach," Land Use Policy, Elsevier, vol. 102(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parviz Azizi & Ali Soltani & Farokh Bagheri & Shahrzad Sharifi & Mehdi Mikaeili, 2022. "An Integrated Modelling Approach to Urban Growth and Land Use/Cover Change," Land, MDPI, vol. 11(10), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunil Kumar & Swagata Ghosh & Sultan Singh, 2022. "Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: a zonal assessment using spatial metrics and GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8246-8286, June.
    2. Youjung Kim & Galen Newman & Burak Güneralp, 2020. "A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models," Land, MDPI, vol. 9(8), pages 1-22, July.
    3. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    4. Somayeh Ahani & Hashem Dadashpoor, 2021. "Urban growth containment policies for the guidance and control of peri-urbanization: a review and proposed framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14215-14244, October.
    5. Luoman Pu, 2022. "Demarcation of Future Urban Rigid and Elastic Development Boundaries of the City of Haikou," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    6. Parviz Azizi & Ali Soltani & Farokh Bagheri & Shahrzad Sharifi & Mehdi Mikaeili, 2022. "An Integrated Modelling Approach to Urban Growth and Land Use/Cover Change," Land, MDPI, vol. 11(10), pages 1-26, October.
    7. Gomes, L.C. & Bianchi, F.J.J.A. & Cardoso, I.M. & Schulte, R.P.O. & Arts, B.J.M. & Fernandes Filho, E.I., 2020. "Land use and land cover scenarios: An interdisciplinary approach integrating local conditions and the global shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 97(C).
    8. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    9. Changchun Feng & Hao Zhang & Liang Xiao & Yongpei Guo, 2022. "Land Use Change and Its Driving Factors in the Rural–Urban Fringe of Beijing: A Production–Living–Ecological Perspective," Land, MDPI, vol. 11(2), pages 1-18, February.
    10. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    11. Peng Wang & Yihui He & Kengcheng Zheng, 2023. "Effects of the Implementation of the Broadband China Policy (BCP) on House Prices: Evidence from a Quasi-Natural Experiment in China," Land, MDPI, vol. 12(5), pages 1-15, May.
    12. Yunfeng Hu & Batu Nacun, 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    13. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    14. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    15. Vishal Chettry & Meenal Surawar, 2021. "Assessment of urban sprawl characteristics in Indian cities using remote sensing: case studies of Patna, Ranchi, and Srinagar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11913-11935, August.
    16. Chenxi Li & Xing Gao & Bao-Jie He & Jingyao Wu & Kening Wu, 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    17. Shaikh Shamim Hasan & Xiangzheng Deng & Zhihui Li & Dongdong Chen, 2017. "Projections of Future Land Use in Bangladesh under the Background of Baseline, Ecological Protection and Economic Development," Sustainability, MDPI, vol. 9(4), pages 1-21, March.
    18. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    19. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    20. Bazant-Fabre, Ondrej & Bonilla-Moheno, Martha & Martínez, M. Luisa & Lithgow, Debora & Muñoz-Piña, Carlos, 2022. "Land planning and protected areas in the coastal zone of Mexico: Do spatial policies promote fragmented governance?," Land Use Policy, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:9:d:10.1007_s10668-021-01231-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.