IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v46y2017icp22-32.html
   My bibliography  Save this article

The practicality of distributed PV-battery systems to reduce household grid reliance

Author

Listed:
  • Hanser, Philip
  • Lueken, Roger
  • Gorman, Will
  • Mashal, James

Abstract

The advent of low-cost solar photovoltaics (PV) and battery electricity storage has the potential to bring about fundamental shifts in the structure of the power sector in the United States. We analyze how PV-battery systems of various sizes could reduce the dependence of residential customers on the central grid and their impact on CO2 emissions. We further analyze how the costs of such systems change as customers attempt to decrease their dependence on the grid, considering the installed cost of PV-battery systems and the cost of electricity under a net-energy metered rate structure. We analyze these relationships for residential customers in five locations across the U.S. We find that fully disconnecting from the grid with a PV-battery system is impractical for most residential customers without also having dispatchable backup generation. Finally, we estimate how the economics of behind-the-meter PV-battery systems may change if the costs of PV systems continue to fall.

Suggested Citation

  • Hanser, Philip & Lueken, Roger & Gorman, Will & Mashal, James, 2017. "The practicality of distributed PV-battery systems to reduce household grid reliance," Utilities Policy, Elsevier, vol. 46(C), pages 22-32.
  • Handle: RePEc:eee:juipol:v:46:y:2017:i:c:p:22-32
    DOI: 10.1016/j.jup.2017.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178715300758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2017.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satchwell, Andrew & Mills, Andrew & Barbose, Galen, 2015. "Quantifying the financial impacts of net-metered PV on utilities and ratepayers," Energy Policy, Elsevier, vol. 80(C), pages 133-144.
    2. Faiers, Adam & Neame, Charles & Cook, Matt, 2007. "The adoption of domestic solar-power systems: Do consumers assess product attributes in a stepwise process?," Energy Policy, Elsevier, vol. 35(6), pages 3418-3423, June.
    3. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    4. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    5. Noll, Daniel & Dawes, Colleen & Rai, Varun, 2014. "Solar Community Organizations and active peer effects in the adoption of residential PV," Energy Policy, Elsevier, vol. 67(C), pages 330-343.
    6. Hittinger, Eric & Siddiqui, Jawad, 2017. "The challenging economics of US residential grid defection," Utilities Policy, Elsevier, vol. 45(C), pages 27-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Fernando Quintero Pulido & Gerwin Hoogsteen & Marnix V. Ten Kortenaar & Johann L. Hurink & Robert E. Hebner & Gerard J. M. Smit, 2018. "Characterization of Storage Sizing for an Off-Grid House in the US and the Netherlands," Energies, MDPI, vol. 11(2), pages 1-13, January.
    2. Yamashiro, Ririka & Mori, Akihisa, 2023. "Combined third-party ownership and aggregation business model for the adoption of rooftop solar PV–battery systems: Implications from the case of Miyakojima Island, Japan," Energy Policy, Elsevier, vol. 173(C).
    3. Ziyu Wang & Guangya Yang, 2019. "Static Operational Impacts of Residential Solar PV Plants on the Medium Voltage Distribution Grids—A Case Study Based on the Danish Island Bornholm," Energies, MDPI, vol. 12(8), pages 1-16, April.
    4. Peffley, Trevor B. & Pearce, Joshua M., 2020. "The potential for grid defection of small and medium sized enterprises using solar photovoltaic, battery and generator hybrid systems," Renewable Energy, Elsevier, vol. 148(C), pages 193-204.
    5. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    6. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    7. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    8. Prata, Ricardo & Carvalho, Pedro M.S., 2018. "Self-supply and regulated tariffs: Dynamic equilibria between photovoltaic market evolution and rate structures to ensure network sustainability," Utilities Policy, Elsevier, vol. 50(C), pages 111-123.
    9. Joanna Aleksiejuk-Gawron & Saulė Milčiuvienė & Julija Kiršienė & Enrique Doheijo & Diego Garzon & Rolandas Urbonas & Darius Milčius, 2020. "Net-Metering Compared to Battery-Based Electricity Storage in a Single-Case PV Application Study Considering the Lithuanian Context," Energies, MDPI, vol. 13(9), pages 1-17, May.
    10. Gorman, Will & Barbose, Galen & Pablo Carvallo, Juan & Baik, Sunhee & Miller, Chandler & White, Philip & Praprost, Marlena, 2023. "County-level assessment of behind-the-meter solar and storage to mitigate long duration power interruptions for residential customers," Applied Energy, Elsevier, vol. 342(C).
    11. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    12. Gorman, Will & Jarvis, Stephen & Callaway, Duncan, 2020. "Should I Stay Or Should I Go? The importance of electricity rate design for household defection from the power grid," Applied Energy, Elsevier, vol. 262(C).
    13. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    2. Soini, Martin Christoph & Parra, David & Patel, Martin Kumar, 2020. "Does bulk electricity storage assist wind and solar in replacing dispatchable power production?," Energy Economics, Elsevier, vol. 85(C).
    3. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    4. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
    5. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    6. Gorman, Will & Jarvis, Stephen & Callaway, Duncan, 2020. "Should I Stay Or Should I Go? The importance of electricity rate design for household defection from the power grid," Applied Energy, Elsevier, vol. 262(C).
    7. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    8. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    9. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    10. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    11. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    12. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    13. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    14. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    15. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Ito, Nobuyuki & Takeuchi, Kenji & Managi, Shunsuke, 2019. "Do battery-switching systems accelerate the adoption of electric vehicles? A stated preference study," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 85-92.
    17. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    18. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    19. Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
    20. Cui, Shiting & Zhu, Ruijin & Wu, Jun, 2024. "A double layer energy cooperation framework for prosumer groups in high altitude areas," Renewable Energy, Elsevier, vol. 224(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:46:y:2017:i:c:p:22-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.