IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2286-d354259.html
   My bibliography  Save this article

Net-Metering Compared to Battery-Based Electricity Storage in a Single-Case PV Application Study Considering the Lithuanian Context

Author

Listed:
  • Joanna Aleksiejuk-Gawron

    (Department of Fundamentals in Engineering and Energy, Institute of Mechanical Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland)

  • Saulė Milčiuvienė

    (Law Faculty, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Julija Kiršienė

    (Law Faculty, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Enrique Doheijo

    (Deloitte, 28020 Madrid, Spain)

  • Diego Garzon

    (Deloitte, 28020 Madrid, Spain)

  • Rolandas Urbonas

    (Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

  • Darius Milčius

    (Lithuanian Energy Institute, LT-44403 Kaunas, Lithuania)

Abstract

Further increases in the number of photovoltaic installations in industry and residential buildings will require technologically and economically flexible energy storage solutions. Some countries utilize net-metering strategies, which use national networks as “virtual batteries.” Despite the financial attractiveness, net-metering faces many technological and economical challenges. It could also lead to the negative tendencies in prosumer behavior, such as a decrease in motivation for the self-consumption of photovoltaic (PV)-generated electricity. Batteries, which are installed on the prosumer’s premises, could be a solution in a particular case. However, the price for battery-based storage solutions is currently sufficiently unattractive for the average prosumer. This paper aimed to present a comparison of the economic and energy related aspects between net-metering and batteries for a single case study by considering the Lithuanian context. The net present value, degree of self-sufficiency, internal rate of return, payback time, and quantified reduction of carbon emission were calculated using a specially developed Prosumer solution simulation tool (Version 1.1, Delloite, Madrid, Spain) for both the PV and net-metering and PV and batteries cases. The received results highlight that the battery-based energy storage systems are currently not an attractive alternative in terms of price where net-metering is available; a rather radical decrease in the installation price for batteries is required.

Suggested Citation

  • Joanna Aleksiejuk-Gawron & Saulė Milčiuvienė & Julija Kiršienė & Enrique Doheijo & Diego Garzon & Rolandas Urbonas & Darius Milčius, 2020. "Net-Metering Compared to Battery-Based Electricity Storage in a Single-Case PV Application Study Considering the Lithuanian Context," Energies, MDPI, vol. 13(9), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2286-:d:354259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2286/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2286/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    2. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    3. Londo, Marc & Matton, Robin & Usmani, Omar & van Klaveren, Marieke & Tigchelaar, Casper & Brunsting, Suzanne, 2020. "Alternatives for current net metering policy for solar PV in the Netherlands: A comparison of impacts on business case and purchasing behaviour of private homeowners, and on governmental costs," Renewable Energy, Elsevier, vol. 147(P1), pages 903-915.
    4. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    5. Uddin, Kotub & Gough, Rebecca & Radcliffe, Jonathan & Marco, James & Jennings, Paul, 2017. "Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom," Applied Energy, Elsevier, vol. 206(C), pages 12-21.
    6. Gitizadeh, Mohsen & Fakharzadegan, Hamid, 2014. "Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic (PV) systems," Energy, Elsevier, vol. 65(C), pages 665-674.
    7. Nikolaidis, Alexandros I. & Charalambous, Charalambos A., 2017. "Hidden financial implications of the net energy metering practice in an isolated power system: Critical review and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 706-717.
    8. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    9. Hanser, Philip & Lueken, Roger & Gorman, Will & Mashal, James, 2017. "The practicality of distributed PV-battery systems to reduce household grid reliance," Utilities Policy, Elsevier, vol. 46(C), pages 22-32.
    10. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    11. Blank, Larry & Gegax, Doug, 2019. "Do residential net metering customers pay their fair share of electricity costs? Evidence from New Mexico utilities," Utilities Policy, Elsevier, vol. 61(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytautas Bocullo & Linas Martišauskas & Ramūnas Gatautis & Otilija Vonžudaitė & Rimantas Bakas & Darius Milčius & Rytis Venčaitis & Darius Pupeikis, 2023. "A Digital Twin Approach to City Block Renovation Using RES Technologies," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    2. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Qudrat-Ullah, Hassan & Kayal, Aymen & Mugumya, Andrew, 2021. "Cost-effective energy billing mechanisms for small and medium-scale industrial customers in Uganda," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayat-Allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Post-Print hal-03344439, HAL.
    2. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    3. Ayat-allah Bouramdane & Alexis Tantet & Philippe Drobinski, 2021. "Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios," Energies, MDPI, vol. 14(15), pages 1-43, August.
    4. Dong, Siyuan & Kremers, Enrique & Brucoli, Maria & Rothman, Rachael & Brown, Solomon, 2020. "Improving the feasibility of household and community energy storage: A techno-enviro-economic study for the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    6. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    7. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    8. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    9. Heine, Karl & Thatte, Amogh & Tabares-Velasco, Paulo Cesar, 2019. "A simulation approach to sizing batteries for integration with net-zero energy residential buildings," Renewable Energy, Elsevier, vol. 139(C), pages 176-185.
    10. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    11. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    12. Tang, Rui & Yildiz, Baran & Leong, Philip H.W. & Vassallo, Anthony & Dore, Jonathon, 2019. "Residential battery sizing model using net meter energy data clustering," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    14. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    15. Hong Eun Moon & Yoon Hee Ha & Kyung Nam Kim, 2022. "Comparative Economic Analysis of Solar PV and Reused EV Batteries in the Residential Sector of Three Emerging Countries—The Philippines, Indonesia, and Vietnam," Energies, MDPI, vol. 16(1), pages 1-26, December.
    16. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    17. Bai, Bo & Xiong, Siqin & Song, Bo & Xiaoming, Ma, 2019. "Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 213-229.
    18. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Cai, Qiran & Qing, Jing & Xu, Qingyang & Shi, Gang & Liang, Qiao-Mei, 2024. "Techno-economic impact of electricity price mechanism and demand response on residential rooftop photovoltaic integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Nikolas G. Chatzigeorgiou & Spyros Theocharides & George Makrides & George E. Georghiou, 2023. "Evaluating the Techno-Economic Effect of Pricing and Consumption Parameters on the Power-to-Energy Ratio for Sizing Photovoltaic-Battery Systems: An Assessment of Prosumers in the Mediterranean Area," Energies, MDPI, vol. 16(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2286-:d:354259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.