IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v85y2023ipbs0301420723006037.html
   My bibliography  Save this article

Is artificial intelligence associated with carbon emissions reduction? Case of China

Author

Listed:
  • Ding, Tao
  • Li, Jiangyuan
  • Shi, Xing
  • Li, Xuhui
  • Chen, Ya

Abstract

With the rapid development of modern information technology, the widespread application of artificial intelligence (AI) technology has had an increasingly critical impact on China's industrial development in recent years. However, few research focuses on the impact of AI development on China's carbon emissions (CEs). Using a data set of 30 Chinese provinces during the period 2006–2019, this study investigates the impact of AI development on CEs and explore potential influencing mechanisms via spatial Durbin model (SDM). It shows that AI development effectively contributes to CEs reduction and the reduction effect remains consistent over varied spatial weights. In terms of the mechanism analysis, technique and structure effects of AI reduce CEs. The heterogeneity analysis reveals that AI reduces CEs through spatial spillover effect with the effect being stronger in central and western China. Finally, based on the findings of this study, some recommendations are provided to promote the development of AI in China and the reduction of CEs.

Suggested Citation

  • Ding, Tao & Li, Jiangyuan & Shi, Xing & Li, Xuhui & Chen, Ya, 2023. "Is artificial intelligence associated with carbon emissions reduction? Case of China," Resources Policy, Elsevier, vol. 85(PB).
  • Handle: RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006037
    DOI: 10.1016/j.resourpol.2023.103892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723006037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Ding & Jiangyuan Li & Xing Shi & Huaqing Wu, 2021. "Driving Forces of Water Intensity in China’s Industrial Sector: A Global Meta-Frontier Production–Theoretical Decomposition Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-25, July.
    2. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    3. Hong, Qianqian & Cui, Linhao & Hong, Penghui, 2022. "The impact of carbon emissions trading on energy efficiency: Evidence from quasi-experiment in China's carbon emissions trading pilot," Energy Economics, Elsevier, vol. 110(C).
    4. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
    5. Liu, Jun & Chang, Huihong & Forrest, Jeffrey Yi-Lin & Yang, Baohua, 2020. "Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    6. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    7. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
    8. Li, Zhiguo & Wang, Jie, 2022. "Spatial spillover effect of carbon emission trading on carbon emission reduction: Empirical data from pilot regions in China," Energy, Elsevier, vol. 251(C).
    9. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    10. Xie, Mengmeng & Ding, Lin & Xia, Yan & Guo, Jianfeng & Pan, Jiaofeng & Wang, Huijuan, 2021. "Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 96(C), pages 295-309.
    11. Yang, Haochang & Li, Lianshui & Liu, Yaobin, 2022. "The effect of manufacturing intelligence on green innovation performance in China," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    12. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    13. Ma, Hongmei & Gao, Qian & Li, Xiuzhen & Zhang, Yun, 2022. "AI development and employment skill structure: A case study of China," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 242-254.
    14. Rammer, Christian & Fernández, Gastón P. & Czarnitzki, Dirk, 2022. "Artificial intelligence and industrial innovation: Evidence from German firm-level data," Research Policy, Elsevier, vol. 51(7).
    15. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    16. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    17. Hongda Liu & Pinbo Yao & Xiaoxia Wang & Jialiang Huang & Liying Yu, 2021. "Research on the Peer Behavior of Local Government Green Governance Based on SECI Expansion Model," Land, MDPI, vol. 10(5), pages 1-26, May.
    18. Fang, Jiayu & Tang, Xue & Xie, Rui & Han, Feng, 2020. "The effect of manufacturing agglomerations on smog pollution," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 92-101.
    19. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    20. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    21. Qu, Chenyao & Shao, Jun & Shi, Zhenkai, 2020. "Does financial agglomeration promote the increase of energy efficiency in China?," Energy Policy, Elsevier, vol. 146(C).
    22. J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
    23. Hao Lv & Beibei Shi & Nan Li & Rong Kang, 2022. "Intelligent Manufacturing and Carbon Emissions Reduction: Evidence from the Use of Industrial Robots in China," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    24. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Meng & Hu, Wei & Qi, Xinzhou & Chang, Tsangyao, 2024. "Do the benefits outweigh the disadvantages? Exploring the role of artificial intelligence in renewable energy," Energy Economics, Elsevier, vol. 131(C).
    2. Song, Yuegang & Wang, Ziqi & Song, Changqing & Wang, Jianhua & Liu, Rong, 2024. "Impact of artificial intelligence on renewable energy supply chain vulnerability: Evidence from 61 countries," Energy Economics, Elsevier, vol. 131(C).
    3. Liu, Lei & Rasool, Zeeshan & Ali, Sajid & Wang, Canghong & Nazar, Raima, 2024. "Robots for sustainability: Evaluating ecological footprints in leading AI-driven industrial nations," Technology in Society, Elsevier, vol. 76(C).
    4. Zhong, Wenli & Liu, Yang & Dong, Kangyin & Ni, Guohua, 2024. "Assessing the synergistic effects of artificial intelligence on pollutant and carbon emission mitigation in China," Energy Economics, Elsevier, vol. 138(C).
    5. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    6. Ding, Tao & Li, Hao & Liu, Li & Feng, Kui, 2024. "An inquiry into the nexus between artificial intelligence and energy poverty in the light of global evidence," Energy Economics, Elsevier, vol. 136(C).
    7. Ke Zhao & Chao Wu & Jinquan Liu, 2024. "Can Artificial Intelligence Effectively Improve China’s Environmental Quality? A Study Based on the Perspective of Energy Conservation, Carbon Reduction, and Emission Reduction," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    8. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    9. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI)," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    10. Dora Almeida & Luísa Carvalho & Paulo Ferreira & Andreia Dionísio & Inzamam Ul Haq, 2024. "Global Dynamics of Environmental Kuznets Curve: A Cross-Correlation Analysis of Income and CO 2 Emissions," Sustainability, MDPI, vol. 16(20), pages 1-35, October.
    11. Ding, Tao & Li, Hao & Tan, Ruipeng & Zhao, Xin, 2023. "How does geopolitical risk affect carbon emissions?: An empirical study from the perspective of mineral resources extraction in OECD countries," Resources Policy, Elsevier, vol. 85(PB).
    12. Li Deng & Zhangqi Zhong, 2024. "The impact of digital infrastructure on carbon emissions: evidence from 284 cities in China," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-38, October.
    13. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas, 2024. "Extreme co-movements between CO2 emission allowances and commodity markets and their response to economic policy uncertainty," Energy Economics, Elsevier, vol. 138(C).
    14. Yanying Wang & Qingyang Wu, 2024. "Robots, firm relocation, and air pollution: unveiling the unintended spatial spillover effects of emerging technology," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
    2. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Han, Wang-Zhe & Zhang, Yi-Ming, 2024. "Carbon reduction effect of industrial robots: Breaking the impasse for carbon emissions and development," Innovation and Green Development, Elsevier, vol. 3(3).
    4. Genghua Tang & Hongxun Mai, 2022. "How Does Manufacturing Intelligentization Influence Innovation in China from a Nonlinear Perspective and Economic Servitization Background?," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    5. Yang, Siying & Liu, Fengshuo, 2024. "Impact of industrial intelligence on green total factor productivity: The indispensability of the environmental system," Ecological Economics, Elsevier, vol. 216(C).
    6. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    7. Xianpu Xu & Yuchen Song, 2023. "Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    8. Yang Shen & Zhihong Yang, 2023. "Chasing Green: The Synergistic Effect of Industrial Intelligence on Pollution Control and Carbon Reduction and Its Mechanisms," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    9. Wei Qian & Yongsheng Wang, 2022. "How Do Rising Labor Costs Affect Green Total Factor Productivity? Based on the Industrial Intelligence Perspective," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    10. Yuxi Chen & Mengting Zhang & Chencheng Wang & Xin Lin & Zhijie Zhang, 2023. "High-Tech Industrial Agglomeration, Government Intervention and Regional Energy Efficiency: Based on the Perspective of the Spatial Spillover Effect and Panel Threshold Effect," Sustainability, MDPI, vol. 15(7), pages 1-29, April.
    11. Zhang, Wei & Ye, Shiqi & Mangla, Sachin Kumar & Emrouznejad, Ali & Song, Malin, 2024. "Smart platforming in automotive manufacturing for NetZero: Intelligentization, green technology, and innovation dynamics," International Journal of Production Economics, Elsevier, vol. 274(C).
    12. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Nepal, Rabindra, 2024. "How does artificial intelligence promote renewable energy development? The role of climate finance," Energy Economics, Elsevier, vol. 133(C).
    13. Zhang, Aili & Zhu, Han & Sun, Xinyu, 2024. "Manufacturing intelligentization and technological innovation: Perspectives on intra-industry impacts and inter-industry technology spillovers," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    14. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    15. Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
    16. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    18. Wanlin Yu & Jinlong Luo, 2022. "Impact on Carbon Intensity of Carbon Emission Trading—Evidence from a Pilot Program in 281 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    19. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    20. Hua Duan & Bin Li & Qi Wang, 2024. "Static High-Quality Development Efficiency and Its Dynamic Changes for China: A Non-Radial Directional Distance Function and a Metafrontier Non-Radial Malmquist Model," Mathematics, MDPI, vol. 12(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.