IDEAS home Printed from https://ideas.repec.org/a/sae/inrsre/v37y2014i3p389-405.html
   My bibliography  Save this article

Matlab Software for Spatial Panels

Author

Listed:
  • J. Paul Elhorst

Abstract

Elhorst provides Matlab routines to estimate spatial panel data models at his website. This article extends these routines to include the bias correction procedure proposed by Lee and Yu if the spatial panel data model contains spatial and/or time-period fixed effects, the direct and indirect effects estimates of the explanatory variables proposed by LeSage and Pace, and a selection framework to determine which spatial panel data model best describes the data. To demonstrate these routines in an empirical setting, a demand model for cigarettes is estimated based on panel data from forty-six US states over the period 1963–1992.

Suggested Citation

  • J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
  • Handle: RePEc:sae:inrsre:v:37:y:2014:i:3:p:389-405
    DOI: 10.1177/0160017612452429
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0160017612452429
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0160017612452429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parent, Olivier & LeSage, James P., 2010. "A spatial dynamic panel model with random effects applied to commuting times," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 633-645, June.
    2. Jan Mutl & Michael Pfaffermayr, 2011. "The Hausman test in a Cliff and Ord panel model," Econometrics Journal, Royal Economic Society, vol. 14, pages 48-76, February.
    3. Florax, Raymond J. G. M. & Folmer, Hendrik & Rey, Sergio J., 2003. "Specification searches in spatial econometrics: the relevance of Hendry's methodology," Regional Science and Urban Economics, Elsevier, vol. 33(5), pages 557-579, September.
    4. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    5. Anselin, Luc & Bera, Anil K. & Florax, Raymond & Yoon, Mann J., 1996. "Simple diagnostic tests for spatial dependence," Regional Science and Urban Economics, Elsevier, vol. 26(1), pages 77-104, February.
    6. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    7. Badi H. Baltagi & Dong Li, 2004. "Prediction in the Panel Data Model with Spatial Correlation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 13, pages 283-295, Springer.
    8. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    9. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    10. Baltagi, Badi H. & Levin, Dan, 1992. "Cigarette taxation: Raising revenues and reducing consumption," Structural Change and Economic Dynamics, Elsevier, vol. 3(2), pages 321-335, December.
    11. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    12. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    13. Baltagi, Badi H & Levin, Dan, 1986. "Estimating Dynamic Demand for Cigarettes Using Panel Data: The Effects of Bootlegging, Taxation and Advertising Reconsidered," The Review of Economics and Statistics, MIT Press, vol. 68(1), pages 148-155, February.
    14. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    15. Mur, Jesús & Angulo, Ana, 2009. "Model selection strategies in a spatial setting: Some additional results," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 200-213, March.
    16. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    17. P Burridge, 1981. "Testing for a Common Factor in a Spatial Autoregression Model," Environment and Planning A, , vol. 13(7), pages 795-800, July.
    18. Badi H. Baltagi & James M. Griffin & Weiwen Xiong, 2000. "To Pool Or Not To Pool: Homogeneous Versus Hetergeneous Estimations Applied to Cigarette Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 117-126, February.
    19. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    20. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    21. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:rri:wpaper:201303 is not listed on IDEAS
    2. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    3. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    4. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    5. Harry H. Kelejian & Gianfranco Piras, 2016. "A J test for dynamic panel model with fixed effects, and nonparametric spatial and time dependence," Empirical Economics, Springer, vol. 51(4), pages 1581-1605, December.
    6. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    7. Ciccarelli, Carlo & Elhorst, J.Paul, 2018. "A dynamic spatial econometric diffusion model with common factors: The rise and spread of cigarette consumption in Italy," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 131-142.
    8. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    9. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    10. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    11. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    12. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    13. Gianfranco Piras, 2013. "Efficient GMM Estimation of a Cliff and Ord Panel Data Model with Random Effects," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 370-388, September.
    14. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    15. Hans Dewachter & Romain Houssa & Priscilla Toffano, 2012. "Spatial propagation of macroeconomic shocks in Europe," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 148(2), pages 377-402, June.
    16. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    17. Ming He & Kuan-Pin Lin, 2015. "Testing in a Random Effects Panel Data Model with Spatially Correlated Error Components and Spatially Lagged Dependent Variables," Econometrics, MDPI, vol. 3(4), pages 1-36, November.
    18. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    19. Arbués, Pelayo & Baños, José F. & Mayor, Matías, 2015. "The spatial productivity of transportation infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 166-177.
    20. Fernando López & Jesús Mur & Ana Angulo, 2014. "Spatial model selection strategies in a SUR framework. The case of regional productivity in EU," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 197-220, August.
    21. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:inrsre:v:37:y:2014:i:3:p:389-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.