IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7574-d1469074.html
   My bibliography  Save this article

Can Artificial Intelligence Effectively Improve China’s Environmental Quality? A Study Based on the Perspective of Energy Conservation, Carbon Reduction, and Emission Reduction

Author

Listed:
  • Ke Zhao

    (School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China)

  • Chao Wu

    (School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China)

  • Jinquan Liu

    (School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China)

Abstract

The “technological dividends” brought by AI development provide a new model for the country to achieve green governance, enhance enterprises’ ability to manage pollutant emissions during production and operations, and create a new driving force for improving environmental quality. In this regard, this paper systematically examines the impact of AI on environmental quality in China by employing provincial panel data spanning from 2000 to 2020. Focusing on energy conservation, carbon reduction, and emissions mitigation, the analysis is conducted through the application of a two-way fixed-effects model and mediation effects model to explore both the effects and the mechanisms of AI’s influence on environmental quality. The findings indicate that the development and implementation of AI contribute positively to China’s efforts in energy conservation, carbon reduction, and emissions mitigation, ultimately leading to an enhancement in environmental quality. This conclusion remains valid after multiple robustness checks. Mechanism tests reveal that the optimization of regional energy structures, advancements in green technological innovation, and upgrades in industrial structures serve as crucial pathways through which AI facilitates energy conservation, carbon reduction, and emissions mitigation. Heterogeneity analysis uncovers a notable “path dependence” effect in China’s AI development; regions characterized by higher material capital investment, more advanced technological market development, and greater levels of marketization experience a relatively more pronounced impact of AI on the enhancement of environmental quality. This study offers direct references and practical insights for countries globally to foster AI development, enhance environmental quality, and advance high-quality economic growth amid the ongoing wave of digital and intelligent transformation.

Suggested Citation

  • Ke Zhao & Chao Wu & Jinquan Liu, 2024. "Can Artificial Intelligence Effectively Improve China’s Environmental Quality? A Study Based on the Perspective of Energy Conservation, Carbon Reduction, and Emission Reduction," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7574-:d:1469074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    2. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    3. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Yaya Li & Yuru Zhang & An Pan & Minchun Han & Eleonora Veglianti, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Post-Print hal-04522085, HAL.
    6. Yu Hao & Haitao Wu, 2021. "The Role of Internet Development on Energy Intensity in China - Evidence From a Spatial Econometric Analysis," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-6.
    7. Ding, Tao & Li, Jiangyuan & Shi, Xing & Li, Xuhui & Chen, Ya, 2023. "Is artificial intelligence associated with carbon emissions reduction? Case of China," Resources Policy, Elsevier, vol. 85(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lei & Rasool, Zeeshan & Ali, Sajid & Wang, Canghong & Nazar, Raima, 2024. "Robots for sustainability: Evaluating ecological footprints in leading AI-driven industrial nations," Technology in Society, Elsevier, vol. 76(C).
    2. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    3. Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
    4. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    5. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    6. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    7. Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
    8. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    9. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    10. José Manuel Madeira Belbute & Paulo Brito, 2009. "On the Relation Between the Endogenous Growth Rate of the Economy and the Dynamics of Renewable Resources," Economics Working Papers 07_2009, University of Évora, Department of Economics (Portugal).
    11. Mao, Fengfu & Hou, Yuqiao & Wang, Rong & Wang, Zongshun, 2023. "Can industrial intelligence break the carbon curse of natural resources in the context of Post-Covid-19 period? Fresh evidence from China," Resources Policy, Elsevier, vol. 86(PA).
    12. Gan, Jiawu & Liu, Lihua & Qiao, Gang & Zhang, Qin, 2023. "The role of robot adoption in green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
    13. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    14. Elheddad, Mohamed & Benjasak, Chonlakan & Deljavan, Rana & Alharthi, Majed & Almabrok, Jaballa M., 2021. "The effect of the Fourth Industrial Revolution on the environment: The relationship between electronic finance and pollution in OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    15. Zhao, Jing & Zhao, Ziru & Zhang, Huan, 2021. "The impact of growth, energy and financial development on environmental pollution in China: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 93(C).
    16. Aurolipsa Das & Narayan Sethi, 2023. "Modelling the environmental pollution-institutional quality nexus in low- and middle-income countries: exploring the role of financial development and educational level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1492-1518, February.
    17. Han, Wang-Zhe & Zhang, Yi-Ming, 2024. "Carbon reduction effect of industrial robots: Breaking the impasse for carbon emissions and development," Innovation and Green Development, Elsevier, vol. 3(3).
    18. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Nepal, Rabindra, 2024. "How does artificial intelligence promote renewable energy development? The role of climate finance," Energy Economics, Elsevier, vol. 133(C).
    19. Pinar, Mehmet, 2024. "Convergence in renewable energy innovation and factors influencing convergence club formation," Renewable Energy, Elsevier, vol. 220(C).
    20. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7574-:d:1469074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.