IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i4p1277-1293.html
   My bibliography  Save this article

Material system analysis: Functional and nonfunctional cobalt in the EU, 2012–2016

Author

Listed:
  • María Fernanda Godoy León
  • Cristina T. Matos
  • Konstantinos Georgitzikis
  • Fabrice Mathieux
  • Jo Dewulf

Abstract

A comprehensive data inventory of the current materials cycle in industry and society is crucial for an informed discussion and for decision‐making on the supply of raw materials. Particularly, it is key to understand how these materials are functionally and nonfunctionally recycled, and enable the assessment of recycling indicators needed for the monitoring of circular economy. In this context, a material system analysis (MSA) of cobalt for the European Union (EU) from 2012 to 2016 is presented and discussed. Detailed results are provided for the year 2016, and the evolution of the flows over time is presented from 2012 to 2016. In addition, six indicators are calculated to characterize the cobalt cycle. In 2016, the EU28 embedded around 24,000 metric tons (t) of cobalt in manufactured products, and 33,700 t were put into use. The main losses of the system are due to nonselective collection of postconsumer waste (disposed), and nonfunctional recycling of old scrap. From the years analyzed, it was possible to detect a shift in the imports; the import of primary material decreased more than 99% between 2012 and 2016, and the import of semiprocessed and processed materials increased around 31% in the same period. This indicates that after 2012, the EU became more dependent on imports in downstream stages of the supply chain. One way to decrease this dependency is to establish higher collection targets, and to establish recycling targets based on the recovery of single materials, in order to decrease the amount dissipated through nonfunctional recycling.

Suggested Citation

  • María Fernanda Godoy León & Cristina T. Matos & Konstantinos Georgitzikis & Fabrice Mathieux & Jo Dewulf, 2022. "Material system analysis: Functional and nonfunctional cobalt in the EU, 2012–2016," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1277-1293, August.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:4:p:1277-1293
    DOI: 10.1111/jiec.13281
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13281
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Céline CARRERE & Jaime MELO DE, 2009. "Non-Tariff Measures: What do we Know, What Should be Done?," Working Papers 200933, CERDI.
    2. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    3. Alexandre Tisserant & Stefan Pauliuk, 2016. "Matching global cobalt demand under different scenarios for co-production and mining attractiveness," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    4. T. E. Graedel & Julian Allwood & Jean‐Pierre Birat & Matthias Buchert & Christian Hagelüken & Barbara K. Reck & Scott F. Sibley & Guido Sonnemann, 2011. "What Do We Know About Metal Recycling Rates?," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 355-366, June.
    5. Zeng, Xianlai & Li, Jinhui, 2015. "On the sustainability of cobalt utilization in China," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 12-18.
    6. Till Zimmermann, 2017. "Uncovering the Fate of Critical Metals: Tracking Dissipative Losses along the Product Life Cycle," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1198-1211, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei, Yueru & Geng, Yong & Chen, Zhujun & Xiao, Shijiang & Gao, Ziyan, 2024. "Ensuring the sustainable supply of semiconductor material: A case of germanium in China," International Journal of Production Economics, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    2. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    3. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    4. Pizarro Barraza, Felipe & Thiyagarajan, Dhandayuthapani & Ramadoss, Ananthakumar & Manikandan, V.S. & Dhanabalan, Shanmuga Sundar & Abarzúa, Carolina Venegas & Sotomayor Soloaga, Pedro & Campos Nazer,, 2024. "Unlocking the potential: Mining tailings as a source of sustainable nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    5. Becker, Jonathon M., 2021. "General equilibrium impacts on the U.S. economy of a disruption to Chinese cobalt supply," Resources Policy, Elsevier, vol. 71(C).
    6. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    7. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    8. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    9. Andersson, Magnus & Ljunggren Söderman, Maria & Sandén, Björn A., 2019. "Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    10. Restrepo, Natalia & Ceballos, Juan Camilo & Uribe, Jorge M., 2023. "Risk spillovers of critical metals firms," Resources Policy, Elsevier, vol. 86(PB).
    11. Zhu-Jun Wang & Zhen-Song Chen & Qin Su & Kwai-Sang Chin & Witold Pedrycz & Mirosław J. Skibniewski, 2024. "Enhancing the sustainability and robustness of critical material supply in electrical vehicle market: an AI-powered supplier selection approach," Annals of Operations Research, Springer, vol. 342(1), pages 921-958, November.
    12. Alexander Cunningham, 2024. "Assessing the feasibility of deep-seabed mining of polymetallic nodules in the Area of seabed and ocean floor beyond the limits of national jurisdiction, as a method of alleviating supply-side issues ," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(2), pages 207-226, June.
    13. Sebastian Ernst Volkmann & Felix Lehnen & Peter A. Kukla, 2019. "Estimating the economics of a mining project on seafloor manganese nodules," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(3), pages 287-306, November.
    14. Seck, Gondia Sokhna & Hache, Emmanuel & Barnet, Charlène, 2022. "Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world," Resources Policy, Elsevier, vol. 75(C).
    15. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    16. Benjamin Jones & Viet Nguyen‐Tien & Robert J. R. Elliott, 2023. "The electric vehicle revolution: Critical material supply chains, trade and development," The World Economy, Wiley Blackwell, vol. 46(1), pages 2-26, January.
    17. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
    18. Yilanci, Veli & Turkmen, N. Ceren & Shah, Muhammad Ibrahim, 2022. "An empirical investigation of resource curse hypothesis for cobalt," Resources Policy, Elsevier, vol. 78(C).
    19. Sören Lars Nungesser & Stefan Pauliuk, 2022. "Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains," Resources, MDPI, vol. 11(10), pages 1-27, October.
    20. Benjamin Jones & Viet Nguyen-Tien & Robert J R Elliott, 2021. "The EV Revolution: Critical Material Supply Chains, Trade, and Development," Discussion Papers 21-15, Department of Economics, University of Birmingham.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:4:p:1277-1293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.