IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v68y2020ics0301420720301537.html
   My bibliography  Save this article

Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving

Author

Listed:
  • Khaboushan, A.Soltani
  • Osanloo, M.

Abstract

A combination of open pit (OP) and underground (UG) mining methods may be applied for extraction of large scale orebodies. Although the optimization of production scheduling of each of these methods has been addressed separately, the simultaneous optimization of the whole mining operations has less been studied. However, such overall optimization strategy may enhance the net present value (NPV) of the adventure, determine the optimum transition depth (OTD), and help to manage natural resources accurately. This paper aims to determine an OTD between OP and block caving (BC) mining methods while scheduling an orebody entirely. In this regard, a semi-symmetrical integer programming (IP) model has been developed and implemented on a real orebody. The numerical results indicate that the OTD locates 10 m above the original OP bottom. By considering this level as the optimum separating limit of OP and UG mining operations, the NPV of the whole project will increase by up to 0.28%. Through the study, the definition of transition zone has been clarified and the transition capability has been introduced as a new term in mining literature.

Suggested Citation

  • Khaboushan, A.Soltani & Osanloo, M., 2020. "Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving," Resources Policy, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720301537
    DOI: 10.1016/j.resourpol.2020.101700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420720301537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    2. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    3. Alexandra Newman & Candace Yano & Enrique Rubio, 2013. "Mining above and below ground: timing the transition," IISE Transactions, Taylor & Francis Journals, vol. 45(8), pages 865-882.
    4. Whittle, D. & Brazil, M. & Grossman, P.A. & Rubinstein, J.H. & Thomas, D.A., 2018. "Combined optimisation of an open-pit mine outline and the transition depth to underground mining," European Journal of Operational Research, Elsevier, vol. 268(2), pages 624-634.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    4. Chung, Joyce & Asad, Mohammad Waqar Ali & Topal, Erkan, 2022. "Timing of transition from open-pit to underground mining: A simultaneous optimisation model for open-pit and underground mine production schedules," Resources Policy, Elsevier, vol. 77(C).
    5. Shuaihang Shi & Zizheng Guo & Peng Ding & Yabin Tao & Hui Mao & Zhichao Jiao, 2022. "Failure Mechanism and Stability Control Technology of Slope during Open-Pit Combing Underground Extraction: A Case Study from Shanxi Province of China," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    6. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    7. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    8. Changyou Xu & Gang Chen & Huabo Lu & Qiuxia Zhang & Zhengke Liu & Jing Bian, 2024. "Integrated Optimization of Production Scheduling and Haulage Route Planning in Open-Pit Mines," Mathematics, MDPI, vol. 12(13), pages 1-24, July.
    9. Leigh Paterson & Jill Miscandlon & David Butler, 2024. "The Juxtaposition of Our Future Electrification Solutions: A View into the Unsustainable Life Cycle of the Permanent Magnet Electrical Machine," Sustainability, MDPI, vol. 16(7), pages 1-26, March.
    10. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    11. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    12. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    13. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    14. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    15. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    16. Whittle, D. & Brazil, M. & Grossman, P.A. & Rubinstein, J.H. & Thomas, D.A., 2018. "Combined optimisation of an open-pit mine outline and the transition depth to underground mining," European Journal of Operational Research, Elsevier, vol. 268(2), pages 624-634.
    17. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    18. Marian Sofranko & Samer Khouri & Olga Vegsoova & Peter Kacmary & Tawfik Mudarri & Martin Koncek & Maxim Tyulenev & Zuzana Simkova, 2020. "Possibilities of Uranium Deposit Kuriskova Mining and Its Influence on the Energy Potential of Slovakia from Own Resources," Energies, MDPI, vol. 13(16), pages 1-21, August.
    19. Amin Mousavi & Erhan Kozan & Shi Qiang Liu, 2016. "Comparative analysis of three metaheuristics for short-term open pit block sequencing," Journal of Heuristics, Springer, vol. 22(3), pages 301-329, June.
    20. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:68:y:2020:i:c:s0301420720301537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.