IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8939-d868035.html
   My bibliography  Save this article

Failure Mechanism and Stability Control Technology of Slope during Open-Pit Combing Underground Extraction: A Case Study from Shanxi Province of China

Author

Listed:
  • Shuaihang Shi

    (China Aviation Supplies Holding Company, Beijing 101312, China)

  • Zizheng Guo

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Peng Ding

    (China Construction Science & Technology Group Co., Ltd., Beijing 100195, China)

  • Yabin Tao

    (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Hui Mao

    (Zhengzhou Road & Bridge Construction Investment Group Co., Ltd., Zhengzhou 450052, China)

  • Zhichao Jiao

    (Beijing Hongchuang Tianye Construction Engineering Co., Ltd., Beijing 101300, China)

Abstract

With the development of society, the demand for mineral resources is gradually increasing, and the current situation of decreasing total resources dictates the inevitable interaction between open-pit combing underground extraction (OPUG) in time and space. In this research, we took the Anjialing coal mine in Shanxi Province of China as a case study, and tested the physical and mechanical properties of coal rocks in the laboratory. The similarity criterion was used to build a similar experimental model for the deformation evolution of the slope of the open-pit mine section; the digital scattering method was used to test the influence of the underground mining process parameters on the deformation evolution of the open-pit slope. The results showed that there was an obvious distribution of “three zones” above the mining goaf, namely, a collapse zone, fracture zone, and slow subsidence zone. When the mining face was continuously advanced towards the bottom of the open pit, the supporting stress of the mining face transferred to the side of the open-pit slope. Additionally, large displacement and stress concentration were observed on the slope near the stoping line, which caused the slope body to move along the uppermost part of the slope first, and thereafter along the lower part. Various techniques for slope stability control are discussed, including the optimization of spatial and temporal relationships between open-pit and underground mining, the optimization of mining plans, and the use of monitoring and early warning systems. The results can provide a guide for slope stability control of similar open-pit mines in the process of mining coal resources.

Suggested Citation

  • Shuaihang Shi & Zizheng Guo & Peng Ding & Yabin Tao & Hui Mao & Zhichao Jiao, 2022. "Failure Mechanism and Stability Control Technology of Slope during Open-Pit Combing Underground Extraction: A Case Study from Shanxi Province of China," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8939-:d:868035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    2. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    3. Marian Sofranko & Samer Khouri & Olga Vegsoova & Peter Kacmary & Tawfik Mudarri & Martin Koncek & Maxim Tyulenev & Zuzana Simkova, 2020. "Possibilities of Uranium Deposit Kuriskova Mining and Its Influence on the Energy Potential of Slovakia from Own Resources," Energies, MDPI, vol. 13(16), pages 1-21, August.
    4. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2022. "Selection of Open-Pit Mining and Technical System’s Sustainable Development Strategies Based on MCDM," Sustainability, MDPI, vol. 14(13), pages 1-31, June.
    5. Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
    6. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    7. Khaboushan, A.Soltani & Osanloo, M., 2020. "Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving," Resources Policy, Elsevier, vol. 68(C).
    8. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    9. Wang, Huiwen & Yi, Wen & Zhen, Lu, 2024. "Optimal policy for scheduling automated guided vehicles in large-scale intelligent transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    10. Carlos Cacciuttolo & Edison Atencio, 2023. "In-Pit Disposal of Mine Tailings for a Sustainable Mine Closure: A Responsible Alternative to Develop Long-Term Green Mining Solutions," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    11. Badakhshan, Naser & Shahriar, Kourosh & Afraei, Sajjad & Bakhtavar, Ezzeddin, 2024. "Optimization of transition from open-pit to underground mining considering environmental costs," Resources Policy, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8939-:d:868035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.