IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/15743.html
   My bibliography  Save this paper

Commodity prices, commodity currencies, and global economic developments

Author

Listed:
  • Jan J. J. Groen
  • Paolo A. Pesenti

Abstract

In this paper we seek to produce forecasts of commodity price movements that can systematically improve on naive statistical benchmarks, and revisit the forecasting performance of changes in commodity currencies as efficient predictors of commodity prices, a view emphasized in the recent literature. In addition, we consider different types of factor-augmented models that use information from a large data set containing a variety of indicators of supply and demand conditions across major developed and developing countries. These factor-augmented models use either standard principal components or partial least squares (PLS) regression to extract dynamic factors from the data set. Our forecasting analysis considers ten alternative indices and sub-indices of spot prices for three different commodity classes across different periods. We find that the exchange rate-based model and especially the PLS factor-augmented model are more prone to outperform the naive statistical benchmarks. However, across our range of commodity price indices we are not able to generate out-of-sample forecasts that, on average, are systematically more accurate than predictions based on a random walk or autoregressive specifications.

Suggested Citation

  • Jan J. J. Groen & Paolo A. Pesenti, 2010. "Commodity prices, commodity currencies, and global economic developments," NBER Working Papers 15743, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:15743
    Note: IFM
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w15743.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    2. Margaret E. Slade & Henry Thille, 2006. "Commodity Spot Prices: An Exploratory Assessment of Market Structure and Forward‐Trading Effects," Economica, London School of Economics and Political Science, vol. 73(290), pages 229-256, May.
    3. Mr. Aasim M. Husain & Chakriya Bowman, 2004. "Forecasting Commodity Prices: Futures Versus Judgment," IMF Working Papers 2004/041, International Monetary Fund.
    4. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    5. Selim Elekdag & René Lalonde & Douglas Laxton & Dirk Muir & Paolo Pesenti, 2008. "Oil Price Movements and the Global Economy: A Model-Based Assessment," IMF Staff Papers, Palgrave Macmillan, vol. 55(2), pages 297-311, June.
    6. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    7. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    8. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    9. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    10. Reinhart, Carmen, 1988. "Real Exchange Rate and Commodity Prices in a Neoclassical Model," MPRA Paper 13188, University Library of Munich, Germany.
    11. Eduardo Borensztein & Carmen M. Reinhart, 1994. "The Macroeconomic Determinants of Commodity Prices," IMF Staff Papers, Palgrave Macmillan, vol. 41(2), pages 236-261, June.
    12. John Y. Campbell, 2008. "Asset Prices and Monetary Policy," NBER Books, National Bureau of Economic Research, Inc, number camp06-1.
    13. Stephen G Cecchetti & Richhild Moessner, 2008. "Commodity prices and inflation dynamics," BIS Quarterly Review, Bank for International Settlements, December.
    14. Jan J. J. Groen & George Kapetanios, 2009. "Model selection criteria for factor-augmented regressions," Staff Reports 363, Federal Reserve Bank of New York.
    15. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    16. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    17. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    18. World Bank, 2009. "Global Economic Prospects 2009 : Commodities at the Crossroads," World Bank Publications - Books, The World Bank Group, number 2581.
    19. Campbell, John Y. (ed.), 2008. "Asset Prices and Monetary Policy," National Bureau of Economic Research Books, University of Chicago Press, number 9780226092119, September.
    20. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    2. Byrne, Joseph P. & Fazio, Giorgio & Fiess, Norbert, 2013. "Primary commodity prices: Co-movements, common factors and fundamentals," Journal of Development Economics, Elsevier, vol. 101(C), pages 16-26.
    3. Klotz, Philipp & Lin, Tsoyu Calvin & Hsu, Shih-Hsun, 2014. "Global commodity prices, economic activity and monetary policy: The relevance of China," Resources Policy, Elsevier, vol. 42(C), pages 1-9.
    4. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    5. repec:dau:papers:123456789/11663 is not listed on IDEAS
    6. repec:dau:papers:123456789/11692 is not listed on IDEAS
    7. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    8. Byrne, Joseph P & Fazio, Giorgio & Fiess, Norbert, 2010. "Optimism and commitment: An elementary theory of bargaining and war," SIRE Discussion Papers 2010-102, Scottish Institute for Research in Economics (SIRE).
    9. repec:ipg:wpaper:2014-414 is not listed on IDEAS
    10. Adrian, Tobias & Etula, Erkko & Groen, Jan J.J., 2011. "Financial amplification of foreign exchange risk premia," European Economic Review, Elsevier, vol. 55(3), pages 354-370, April.
    11. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    12. Libo Yin & Liyan Han, 2016. "Macroeconomic impacts on commodity prices: China vs. the United States," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 489-500, March.
    13. Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    14. Selien De Schryder & Gert Peersman, 2016. "The U.S. Dollar Exchange Rate and the Demand for Oil," The Energy Journal, , vol. 37(1), pages 90-114, January.
    15. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    16. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    17. Marcel Fratzscher & Daniel Schneider & Ine Van Robays, 2013. "Oil Prices, Exchange Rates and Asset Prices," Discussion Papers of DIW Berlin 1302, DIW Berlin, German Institute for Economic Research.
    18. Jo, Soojin & Karnizova, Lilia & Reza, Abeer, 2019. "Industry effects of oil price shocks: A re-examination," Energy Economics, Elsevier, vol. 82(C), pages 179-190.
    19. repec:ipg:wpaper:19 is not listed on IDEAS
    20. Schalck, Christophe & Chenavaz, Régis, 2015. "Oil commodity returns and macroeconomic factors: A time-varying approach," Research in International Business and Finance, Elsevier, vol. 33(C), pages 290-303.
    21. Kilian, Lutz & Zhou, Xiaoqing, 2022. "Oil prices, exchange rates and interest rates," Journal of International Money and Finance, Elsevier, vol. 126(C).
    22. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    23. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
    24. Kallis, Giorgos & Sager, Jalel, 2017. "Oil and the economy: A systematic review of the literature for ecological economists," Ecological Economics, Elsevier, vol. 131(C), pages 561-571.

    More about this item

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:15743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.