IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v73y2018icp172-184.html
   My bibliography  Save this article

The ridership performance of the built environment for BRT systems: Evidence from Latin America

Author

Listed:
  • Vergel-Tovar, C. Erik
  • Rodriguez, Daniel A.

Abstract

Despite the increasing popularity of BRT worldwide, there is a lack of empirical evidence regarding the built environment characteristics that determine BRT ridership. We examine associations between BRT station level demand and built environment attributes for 120 stations in seven Latin American cities. Using direct ridership models, we study whether underlying built environment factors identified using factor analysis and the package of these factors embodied in station “types” identified using cluster analysis were associated with higher ridership. Of the nine factors identified, those describing compactness with dominant multifamily residential uses and stations with public and institutional land uses along the corridor were positively associated with ridership, while factors describing single-family residential development away from the CBD were negatively associated with ridership. Thirteen station types were identified, of which six were associated with BRT ridership. Relevant station types for ridership included those with a high mixture of land uses, the presence of institutional uses and public facilities, major transfer nodes in peripheral areas, and stations with a strong pedestrian environment. Taken together, our findings suggest that the mix and dominance of various land uses around the stop, the location of BRT stations relative to the CBD, the developable land around the station, and the integration of the station to the urban fabric are important characteristics that determine BRT ridership. These insights will help substantiate the case for prioritizing-built environment changes as a means to build more prosperous and sustainable mass transit systems.

Suggested Citation

  • Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
  • Handle: RePEc:eee:jotrge:v:73:y:2018:i:c:p:172-184
    DOI: 10.1016/j.jtrangeo.2018.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317303526
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    3. David Hensher & Zheng Li, 2012. "Erratum to: Ridership drivers of bus rapid transit systems," Transportation, Springer, vol. 39(6), pages 1223-1224, November.
    4. Robert Cervero & Jin Murakami, 2009. "Rail and Property Development in Hong Kong: Experiences and Extensions," Urban Studies, Urban Studies Journal Limited, vol. 46(10), pages 2019-2043, September.
    5. Cervero, Robert, 1994. "Transit-based housing in California: evidence on ridership impacts," Transport Policy, Elsevier, vol. 1(3), pages 174-183, June.
    6. Hiroaki Suzuki & Robert Cervero & Kanako Iuchi, 2013. "Transforming Cities with Transit : Transit and Land-Use Integration for Sustainable Urban Development [Transformando las ciudades con el transporte público : integración del transporte público y el," World Bank Publications - Books, The World Bank Group, number 12233.
    7. Daniel G. Chatman, 2013. "Does TOD Need the T?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 79(1), pages 17-31, January.
    8. Marsden, Greg, 2006. "The evidence base for parking policies--a review," Transport Policy, Elsevier, vol. 13(6), pages 447-457, November.
    9. David Hensher & Zheng Li, 2012. "Ridership drivers of bus rapid transit systems," Transportation, Springer, vol. 39(6), pages 1209-1221, November.
    10. Michael Manville, 2017. "Travel and the Built Environment: Time for Change," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 29-32, January.
    11. Cervero, Robert & Dai, Danielle, 2014. "BRT TOD: Leveraging transit oriented development with bus rapid transit investments," Transport Policy, Elsevier, vol. 36(C), pages 127-138.
    12. Atkinson-Palombo, Carol & Kuby, Michael J., 2011. "The geography of advance transit-oriented development in metropolitan Phoenix, Arizona, 2000–2007," Journal of Transport Geography, Elsevier, vol. 19(2), pages 189-199.
    13. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    14. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    15. Currie, Graham & Delbosc, Alexa, 2011. "Understanding bus rapid transit route ridership drivers: An empirical study of Australian BRT systems," Transport Policy, Elsevier, vol. 18(5), pages 755-764, September.
    16. Jinkyung Choi & Yong Lee & Taewan Kim & Keemin Sohn, 2012. "An analysis of Metro ridership at the station-to-station level in Seoul," Transportation, Springer, vol. 39(3), pages 705-722, May.
    17. Cervero, Robert & Murakami, Jin & Miller, Mark A., 2009. "Direct Ridership Model of Bus Rapid Transit in Los Angeles County," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt39q7w812, Institute of Transportation Studies, UC Berkeley.
    18. Erick Guerra & Robert Cervero, 2011. "Cost of a Ride," Journal of the American Planning Association, Taylor & Francis Journals, vol. 77(3), pages 267-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Insights into the Impacts of Mega Transport Infrastructures on the Transformation of Urban Fabric: Case of BRT Lahore," Sustainability, MDPI, vol. 13(13), pages 1-32, July.
    2. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    3. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    4. Malik, Bilal Zia & Rehman, Zia ur & Khan, Ammad Hassan & Akram, Waseem, 2021. "Investigating users' travel behaviours and perceptions of single-corridor BRT: Lessons from Lahore," Journal of Transport Geography, Elsevier, vol. 91(C).
    5. Hui Bi & Zhirui Ye & He Zhu, 2024. "Mining bike sharing trip record data: a closer examination of the operating performance at station level," Transportation, Springer, vol. 51(3), pages 1015-1041, June.
    6. Yanyan Chen & Zheng Zhang & Tianwen Liang, 2019. "Assessing Urban Travel Patterns: An Analysis of Traffic Analysis Zone-Based Mobility Patterns," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    7. Lanjing Wang & Chunli Zhao & Xiaofei Liu & Xumei Chen & Chaoyang Li & Tao Wang & Jiani Wu & Yi Zhang, 2021. "Non-Linear Effects of the Built Environment and Social Environment on Bus Use among Older Adults in China: An Application of the XGBoost Model," IJERPH, MDPI, vol. 18(18), pages 1-22, September.
    8. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    9. Hu, Yucong & Cao, Jiangyu & Liu, Jianrong, 2021. "Influence of bus stop land use characteristics on passenger waiting time satisfaction ‐ A case study in Guangzhou," Journal of Transport Geography, Elsevier, vol. 96(C).
    10. Tang, Tianli & Gu, Ziyuan & Yang, Yuanxuan & Sun, Haobo & Chen, Siyuan & Chen, Yuting, 2024. "A data-driven framework for natural feature profile of public transport ridership: Insights from Suzhou and Lianyungang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    2. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    3. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    4. Duncan, Michael, 2019. "Would the replacement of park-and-ride facilities with transit-oriented development reduce vehicle kilometers traveled in an auto-oriented US region?," Transport Policy, Elsevier, vol. 81(C), pages 293-301.
    5. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    7. Guerra, Erick & Cervero, Robert & Tischler, Daniel, 2011. "The Half-Mile Circle: Does It Represent Transit Station Catchments?," University of California Transportation Center, Working Papers qt0d84c2f4, University of California Transportation Center.
    8. Bo Wan & Xudan Zhao & Yuhan Sun & Tao Yang, 2023. "Unraveling the Impact of Spatial Configuration on TOD Function Mix Use and Spatial Intensity: An Analysis of 47 Morning Top-Flow Stations in Beijing (2018–2020)," Sustainability, MDPI, vol. 15(10), pages 1-27, May.
    9. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    10. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    12. Jason Cao & Xiaoshu Cao, 2014. "The Impacts of LRT, Neighbourhood Characteristics, and Self-selection on Auto Ownership: Evidence from Minneapolis-St. Paul," Urban Studies, Urban Studies Journal Limited, vol. 51(10), pages 2068-2087, August.
    13. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    14. Zhao, Pengjun & Yang, Hanzi & Kong, Lu & Liu, Yunshu & Liu, Di, 2018. "Disintegration of metro and land development in transition China: A dynamic analysis in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 290-307.
    15. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.
    16. Guerra, Erick & Cervero, Robert & Tischler, Daniel, 2011. "The Half-Mile Circle: Does It Best Represent Transit Station Catchments?," University of California Transportation Center, Working Papers qt68r764df, University of California Transportation Center.
    17. Wang, Siqin & Liu, Yan, 2022. "Parking in inner versus outer city spaces: Spatiotemporal patterns of parking problems and their associations with built environment features in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 98(C).
    18. Guerra, Erick & Cervero, Robert & Tischler, Daniel, 2011. "The Half-Mile Circle: Does It Best Represent Transit Station Catchments?," University of California Transportation Center, Working Papers qt9jd6r1t9, University of California Transportation Center.
    19. Currie, Graham & Delbosc, Alexa, 2014. "Assessing Bus Rapid Transit system performance in Australasia," Research in Transportation Economics, Elsevier, vol. 48(C), pages 142-151.
    20. Liu, Yudi & Nath, Nabamita & Murayama, Akito & Manabe, Rikutaro, 2022. "Transit-oriented development with urban sprawl? Four phases of urban growth and policy intervention in Tokyo," Land Use Policy, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:73:y:2018:i:c:p:172-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.